Skip to main content
Log in

Impacts of calcium-alginate density on equilibrium and kinetics of lead(II) sorption onto hydrogel beads

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Chronic exposure to Pb2+ above the 15-μg/L US Environmental Protection Agency action level for drinking water has been shown to cause a host of health problems in humans. Thus, it is important to study new methods available for the treatment and removal of Pb2+ from drinking water and wastewater, where elevated levels of heavy metals are found. Alginate-based beads represent one such possible method for heavy metal removal. The impact of alginate density on the equilibrium and kinetics of Pb2+ sorption onto hydrogel beads was investigated using Ca-alginate beads ranging from 1% to 8% (w/v) and exposed to Pb2+ concentrations ranging from 100 to 1,000 mg/L. When Ca-alginate beads were characterized using Fourier transform infrared analysis, the carboxylic acid groups of the mannuronate and guluronate residues in alginate were the primary functional groups that interacted with Pb2+. Hydration of Ca-alginate beads was also examined and found to decrease as Ca-alginate density increased. A positive correlation was observed between Ca-alginate hydration and Pb2+ sorption. Sorption of Pb2+ was fast, reaching equilibrium after approximately 4 h, and is well described by the Langmuir adsorption isotherm. Maximum sorption capacities for 1%, 4%, and 8% beads were 500 ± 100, 360 ± 30, and 240 ± 20 mg/g (dry weight), respectively. The kinetics of sorption were best described by the pseudo-second-order Lagergren model, with rate constants determined as 3.2 ± 0.1 × 10−4, 1.0 ± 0.1 × 10−4, and 1.6 ± 0.1 × 10−4 g mg−1 min−1 for 1%, 4%, and 8% beads, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNESCO (2003) Water for people water for life: The United Nations World Water Development Report (UNESCO)

  2. Brauckmann BM (1990) In: Volesky B (ed) Biosorption of heavy metals. CRS, Boca Raton, p 52

    Google Scholar 

  3. Haug A (1961) Acta Chem Scand 15:1794

    Article  CAS  Google Scholar 

  4. Pandey AK, Pandey SD, Misra V (2002) Ecotoxicol Environ Saf 52:92

    Article  CAS  Google Scholar 

  5. Torres E, Mata YN, Blázquez ML, Muñoz JA, González F, Ballester A (2005) Langmuir 21:7951

    Article  CAS  Google Scholar 

  6. Khotimchenko M, Kovalev V, Khotimchenko Y (2008) J. Environ Sci (China) 20:827

    CAS  Google Scholar 

  7. Chen J, Tendeyong F, Yiacoumi S (1997) Environ Sci Technol 31:1433

    Article  CAS  Google Scholar 

  8. Chen JP, Wang L, Zou S-W (2007) Chem Eng J (Amsterdam, Neth.) 131:209

    CAS  Google Scholar 

  9. Papageorgiou SK, Kouvelos EP, Katsaros FK (2008) Desalination 224:293

    Article  CAS  Google Scholar 

  10. Vijaya Y, Popuri SR, Boddu VM, Krishnaiah A (2008) Carbohydr Polym 72:261

    Article  CAS  Google Scholar 

  11. Braccini I, Perez S (2001) Biomacromolecules 2:1089

    Article  CAS  Google Scholar 

  12. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) FEBS Lett 32:195

    Article  CAS  Google Scholar 

  13. Davis TA, Pinheiro JP, Grasdalen H, Smidsrød O, Van Leeuwen HP (2008) Environ Sci Technol 42:1673

    Article  CAS  Google Scholar 

  14. Draget KI, Skjâk Brêk G, Smidsröd O (1994) Carbohydr Polym 25:31

    Article  CAS  Google Scholar 

  15. Bajpai SK, Sharma S (2004) React Funct Polym 59:129

    Article  CAS  Google Scholar 

  16. Arica YM, Arpa C, Ergene A, Bayramoglu G, Genc Ö (2003) Carbohydr Polym 52:167

    Article  Google Scholar 

  17. Lim S-F, Zheng Y-M, Zou S-W, Chen PJ (2008) Environ Sci Technol 42:2551

    Article  CAS  Google Scholar 

  18. Makino K, Hiyoshi J, Ohshima H (2000) Colloids Surf B: Biointerfaces 19:197

    Article  CAS  Google Scholar 

  19. Gélabert A, Pokrovsky OS, Schott J, Boudou A, Feurtet-Mazel A (2007) Geochim Cosmochim Acta 71:3698

    Article  Google Scholar 

  20. Ho Y, McKay G (1999) Process Biochem 34:451

    Article  CAS  Google Scholar 

  21. Pathak TS, Kim JS, Lee SJ, Baek DJ, Paeng KJ (2008) J Polym Environ 16:198

    Article  CAS  Google Scholar 

  22. Sartori C, Finch DS, Ralph B, Gilding K (1997) Polymer 38:43

    Article  CAS  Google Scholar 

  23. Ritchie GA (1977) J Chem Soc Faraday Trans 73:1650

    Article  CAS  Google Scholar 

  24. Papageorgiou SK, Katsaros FK, Kouvelos EP, Nolan JW, Le Deit H, Kanellopoulos NK (2006) J Hazard Mater 137:1765

    Article  CAS  Google Scholar 

  25. Miles CA, Avery NC, Rodin VV, Bailey AJ (2005) J Mol Biol 346:551

    Article  CAS  Google Scholar 

  26. Bayramoglu G, Tuzun I, Celik G, Yilmaz M, Arica YM (2006) Int J Miner Process 81:35

    Article  CAS  Google Scholar 

  27. Xiangliang P, Jianlong W, Daoyong Z (2005) Process Biochem (Oxford, U.K.) 40:2799

    Google Scholar 

Download references

Acknowledgement

This research was funded by the Jerome A. Schiff Fellowship (Wellesley College) and the Merck/AAAS Undergraduate Science Research Program awarded to Wellesley College. The authors thank Ms. Lauren F. Allison for help with some measurements on the hydrogel beads.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nolan T. Flynn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, T.J., Yau, JH., Allen, M.M. et al. Impacts of calcium-alginate density on equilibrium and kinetics of lead(II) sorption onto hydrogel beads. Colloid Polym Sci 287, 1033–1040 (2009). https://doi.org/10.1007/s00396-009-2058-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2058-4

Keywords

Navigation