Skip to main content
Log in

A comparative study on specific and nonspecific interactions in bovine serum albumin: thermal and volume effects of halothane and palmitic acid

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Interaction modes of halothane and palmitic acid with bovine serum albumin (BSA) were studied from the thermal and volumetric viewpoints. The thermal stability of BSA was increased by increasing both ligand concentrations. However, the stronger effect of palmitic acid than halothane on BSA was observed at lower concentrations irrespective of the pH-dependent BSA structure. On the other hand, the volume of BSA in the solution shrunk by adding halothane independent of its structure while it expanded by adding palmitic acid. The molar ratio of halothane to BSA at the effective concentration was not consistent with the binding numbers on human serum albumin determined from the X-ray analysis, whereas that of palmitic acid was in good agreement with the numbers. We judged from these facts that halothane is a nonspecific binder to BSA; by contrast, palmitic acid is a specific binder. The stabilization mechanisms of the BSA structure were also revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Franks NP, Lieb WR (1982) Nature 300:487

    Article  CAS  Google Scholar 

  2. Franks NP, Lieb WR (1994) Nature 367:607

    Article  CAS  Google Scholar 

  3. Koubi L, Tarek M, Klein ML, Scharf D (2000) Biophys J 78:800

    Article  CAS  Google Scholar 

  4. Cantor RS (2001) Biophys J 80:2284

    Article  CAS  Google Scholar 

  5. Heimburg T, Jackson AD (2007) Biophys J 92:3159

    Article  CAS  Google Scholar 

  6. Tanner JW, Liebman PA, Eckenhoff RG (1998) Toxicol Lett 100–101:387

    Article  Google Scholar 

  7. Tanner JW, Eckenhoff RG, Liebman PA (1999) Biochim Biophys Acta 1430:46

    CAS  Google Scholar 

  8. Ueda I, Suzuki A, Kamaya H (1998) Toxicol Lett 100–101:405

    Article  Google Scholar 

  9. Ueda I, Suzuki A (1998) Biochim Biophys Acta 1380:313

    CAS  Google Scholar 

  10. Ueda I, Matsuki H, Kamaya H, Krishna PR (1999) Biophys J 78:483

    Article  Google Scholar 

  11. Nishimoto M, Hata T, Goto M, Tamai N, Kaneshina S, Matsuki H, Ueda I (2009) Chem Phys Lipids 158:71

    Article  CAS  Google Scholar 

  12. Mashimo T, Suezaki Y, Ueda I (1982) Physiol Chem Phys 14:543

    CAS  Google Scholar 

  13. Mashimo T, Kamaya H, Ueda I (1986) Mol Pharmacol 29:149

    CAS  Google Scholar 

  14. Johansson JS, Eckenhoff RG, Dutton PL (1995) Anesthesiology 83:316

    Article  CAS  Google Scholar 

  15. Johansson JS (1997) J Biol Chem 272:17961

    Article  CAS  Google Scholar 

  16. Johansson JS, Zou H, Tanner JW (1999) Anesthesiology 90:235

    Article  CAS  Google Scholar 

  17. Eckenhoff RG, Shuman H (1993) Anesthesiology 79:96

    Article  CAS  Google Scholar 

  18. Eckenhoff RG (1996) J Biol Chem 271:15521

    CAS  Google Scholar 

  19. Eckenhoff RG, Tanner JW (1998) Biophys J 75:477

    Article  CAS  Google Scholar 

  20. Eckenhoff RG, Petersen CE, Ha C-E, Bhagavan NV (2000) J Biol Chem 275:30439

    Article  CAS  Google Scholar 

  21. Dubois BW, Evers AS (1992) Biochemistry 31:7069

    Article  CAS  Google Scholar 

  22. Dubois BW, Cherian SF, Evers AS (1993) Proc Natl Acad Sci USA 90:6478

    Article  CAS  Google Scholar 

  23. Yoshida T, Tanaka M, Mori Y, Ueda I (1997) Biochim Biophys Acta 1334:117

    CAS  Google Scholar 

  24. Liu R, Pidikiti R, Ha C-E, Petersen CE, Bhagavan NV, Eckenhoff RG (2002) J Biol Chem 277:36373

    Article  CAS  Google Scholar 

  25. Chan K, Meng QC, Johansson JS, Eckenhoff RG (2002) Anal Biochem 301:308

    Article  CAS  Google Scholar 

  26. Liu R, Meng Q, Xi J, Yang J, Ha C-E, Bhagavan NV, Eckenhoff RG (2004) Biochem J 380:147

    Article  CAS  Google Scholar 

  27. Sawas AH, Pentyala SN, Rebecchi MJ (2004) Biochemistry 43:12675

    Article  CAS  Google Scholar 

  28. Ueda I, Yamanaka M (1997) Biophys J 72:1812

    Article  CAS  Google Scholar 

  29. Ueda I, Mashimo T (1982) Physiol Chem Phys 14:157

    CAS  Google Scholar 

  30. Yamanaka M, Kaneshina S, Kamaya H, Ueda I (2001) Colloid Surf B: Biointerf 22:23

    Article  CAS  Google Scholar 

  31. Ogli K (2002) In: Urban BW, Barann M (eds) Molecular and basic mechanisms of anesthesia. Pabst, Berlin, p 36

  32. Carter DC, Ho JX (1994) Adv Protein Chem 45:152

    Google Scholar 

  33. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Protein Eng 12:439

    Article  CAS  Google Scholar 

  34. Aoki K, Foster JF (1957) J Am Chem Soc 79:3385

    Article  CAS  Google Scholar 

  35. Foster JF (1977) In: Rosenoer VM, Oratz M, Rothschild MA (eds) Albumin structure, function and uses. Pergamon, Oxford, p 53

  36. Peters T Jr (1985) Advan Protein Chem 37:161

    Article  CAS  Google Scholar 

  37. Era S, Ashida H, Nagaoka S, Inouye H, Sogami M (1983) Int J Peptide Protein Res 22:333

    CAS  Google Scholar 

  38. Ogli K, Komatsu U, Matsuki H, Kaneshina S (2005) Anesthesia and Resuscitation (in Japanese) 41:39

    CAS  Google Scholar 

  39. Giancola C, Sena CD, Fessas D, Graziano G, Barone G (1997) Int J Biol Macromol 20:193

    Article  CAS  Google Scholar 

  40. Michnik A (2003) J Therm Anal Cal 71:509

    Article  CAS  Google Scholar 

  41. Shrake A, Ross PD (1988) J Biol Chem 263:15392

    CAS  Google Scholar 

  42. Yamasaki M, Yano H, Aoki K (1992) Int J Biol Macromol 12:263

    Article  Google Scholar 

  43. Kodama M, Takebayashi S, Kidokoro S, Uedaira H (1992) Netsu Sokutei (in Japanese) 19:163

    CAS  Google Scholar 

  44. Yang JT, Foster JF (1954) J Am Chem Soc 76:1588

    Article  CAS  Google Scholar 

  45. Tanford C, Buzzell JG, Rands DG, Swanson SA (1955) J Am Chem Soc 77:6421

    Article  CAS  Google Scholar 

  46. Tanford C, Buzzell JG (1956) J Phys Chem 77:225

    Article  Google Scholar 

  47. Mikhail SZ, Kimel WR (1961) J Chem Eng Data 6:533

    Article  CAS  Google Scholar 

  48. Egashira K, Nishi N (1998) J Phys Chem B 102:4054

    Article  CAS  Google Scholar 

  49. Nagasawa Y, Nakagawa Y, Nagafuji A, Okada T, Miyasaka H (2005) J Mol Struct 735–736:217

    Article  Google Scholar 

  50. Bhattacharya AA, Curry S, Franks NP (2000) J Biol Chem 275:38731

    Article  CAS  Google Scholar 

  51. Bhattacharya AA, Grüne T, Curry S (2000) J Mol Biol 303:721

    Article  CAS  Google Scholar 

  52. Reed RG (1986) J Biol Chem 261:15619

    CAS  Google Scholar 

  53. Cistola DP, Small DM, Hamilton JA (1987) J Biol Chem 262:10971

    CAS  Google Scholar 

  54. Kyte J, Doolittle RF (1982) J Mol Biol 157:105

    Article  CAS  Google Scholar 

  55. Bigelow CC (1967) J Theor Biol 16:187

    Article  CAS  Google Scholar 

  56. Seto T, Mashimo T, Yoshiya I, Kaneshiro M, Taniguchi Y (1998) J Anesth 12:41

    Article  Google Scholar 

  57. Ralston AW, Hoerr CW (1942) J Org Chem 7:546

    Article  CAS  Google Scholar 

  58. Mukae K, Sakurai M, Sawamura S, Makino K, Kim SW, Ueda I, Shirahama K (1993) J Phys Chem 97:737

    Article  CAS  Google Scholar 

  59. Ben-Naim A (1980) Hydrophobic interactions. Plenum, New York Chapter 5

    Google Scholar 

  60. Gekko K, Noguchi H (1979) J Phys Chem 83:2706

    Article  CAS  Google Scholar 

  61. Gekko K, Hasegawa Y (1986) Biochemistry 25:6563

    Article  CAS  Google Scholar 

  62. Gekko K, Hasegawa Y (1989) J Phys Chem 93:426

    Article  CAS  Google Scholar 

  63. Takekiyo T, Imai T, Kato M, Taniguchi Y (2006) Biochim Biophys Acta 1764:355

    CAS  Google Scholar 

  64. Imamura H, Kato M (2009) Proteins 75:911

    Google Scholar 

  65. Yamato T, Higo J, Seno Y, Go N (1993) Proteins 16:327

    Article  CAS  Google Scholar 

  66. Simard JR, Zunszain PA, Hamilton JA, Curry S (2006) J Mol Biol 361:336

    Article  CAS  Google Scholar 

  67. Fujiwara S, Amisaki T (2008) Biophys J 94(2008):92–103

    Google Scholar 

  68. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) J Mol Biol 353:38

    Article  CAS  Google Scholar 

  69. Moreland JL, Gramada A, Buzko OV, Zhang Q, Bourne PE (2005) BMC Bioinformatics 6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Matsuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimoto, M., Komatsu, U., Tamai, N. et al. A comparative study on specific and nonspecific interactions in bovine serum albumin: thermal and volume effects of halothane and palmitic acid. Colloid Polym Sci 287, 979–989 (2009). https://doi.org/10.1007/s00396-009-2054-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2054-8

Keywords

Navigation