Skip to main content
Log in

A molecular dynamics approach to examine the kinetics of the capillary imbibition of a polymer at nanoscale

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A molecular dynamics (MD) approach was employed to simulate the imbibition of a designed nanopore by a polymer. The length of imbibition as a function of time for various interactions between the polymer and the pore wall was recorded for this system (i.e., polymer and nanopore). By and large, the kinetics of imbibition was successfully described by the Lucas–Washburn (LW) equation, although deviation from it was observed in some cases. This nonuniformity contributes to the neglect of the dynamic contact angle (DCA) in the LW equation. Two commonly used models (i.e., hydrodynamic and molecular–kinetic models) were thus employed to calculate the DCA. It is demonstrated that none of the evaluated models is able to justify the simulation results in which are not in good agreement with the simple LW equation. Further investigation of the MD simulation data revealed an interesting fact that there is a direct relationship between the wall–polymer interaction and the speed of the capillary imbibition. More evidence to support this claim will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shin K, Obukhov S, Chen JT, Huh J, Hwang Y, Mok S, Dobriyal P, Thiyagarajan P, Russel TP (2007) Nat Mater 6:961–965

    Article  CAS  Google Scholar 

  2. Li H, Ke Y, Hu Y (2006) J Appl Polym Sci 99:1018–1023

    Article  CAS  Google Scholar 

  3. Suh KY, Kim YS, Lee HH (2001) Adv Mater 13:1386–1389

    Article  CAS  Google Scholar 

  4. Stafford CM, Harrison C, Beers KL, Karim A, Amis AJ, VanLandingham MR, Kim HC, Volksen W, Miller RD, Simonyi EE (2004) Nat Mater 3:545–550

    Article  CAS  Google Scholar 

  5. Lucas R (1918) Kolloid-Z 23:15–22

    Article  CAS  Google Scholar 

  6. Washburn EW (1921) Phys Rev 17:273–283

    Article  Google Scholar 

  7. Supple S, Quirke N (2003) Phys Rev Lett 90:214501

    Article  CAS  Google Scholar 

  8. Supple S, Quirke N (2005) J Chem Phys 122:104706

    Article  CAS  Google Scholar 

  9. de Gennes PG (1985) Rev Mod Phys 57:827–863

    Article  Google Scholar 

  10. Cox RG (1986) J Fluid Mech 168:169–194

    Article  CAS  Google Scholar 

  11. Shikhmurzaev YD (1997) J Fluid Mech 334:211–249

    Article  CAS  Google Scholar 

  12. Blake TD, Haynes JM (1969) J Colloid Interface Sci 30:421–423

    Article  CAS  Google Scholar 

  13. Martic G, Blake TD, De Coninck J (2005) Langmuir 21:11201–11207

    Article  CAS  Google Scholar 

  14. Bracke M, De Voeght F, Joos P (1989) Prog Colloid Polym Sci 79:142–149

    Article  CAS  Google Scholar 

  15. Voinov OV (1976) Fluid Dynamics 11:714–721

    Article  Google Scholar 

  16. de Gennes PG, Hua X, Levinson P (1990) J Fluid Mech 212:55–63

    Article  Google Scholar 

  17. Thompson PA, Robbins MO (1989) Phys Rev Lett 63:766–769

    Article  CAS  Google Scholar 

  18. Cazabat AM, Gerdes S, Valignat MP, Villette S (1997) Interface Sci 5:129–139

    Article  CAS  Google Scholar 

  19. Cherry BW, Holmes CM (1969) J Colloid Interface Sci 29:174–176

    Article  CAS  Google Scholar 

  20. Ruckenstein E, Dunn CS (1977) J Colloid Interface Sci 59:135–138

    Article  CAS  Google Scholar 

  21. Blake TD, De Coninck J (2002) Adv Colloid Interface Sci 96:21–36

    Article  CAS  Google Scholar 

  22. Blake TD (2006) J Colloid Interface Sci 299:1–13

    Article  CAS  Google Scholar 

  23. Martic G, Gentner F, Seveno D, Coulon D, De Coninck J, Blake TD (2002) Langmuir 18:7971–7976

    Article  CAS  Google Scholar 

  24. Martic G, Gentner F, Seveno D, De Coninck J, Blake TD (2004) J Colloid Interface Sci 270:171–179

    Article  CAS  Google Scholar 

  25. Dimitrov DI, Milchev A, Binder K (2007) Phys Rev Lett 99:054501

    Article  CAS  Google Scholar 

  26. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  27. Soddemann T, Dünweg B, Kremer K (2003) Phys Rev E 68:046702

    Article  Google Scholar 

  28. Grest GS, Kremer K (1986) Phys Rev A 33:3628–3631

    Article  CAS  Google Scholar 

  29. Backer JA, Lowe CP, Hoefsloot HCJ, Iedema PD (2005) J Chem Phys 122:154503

    Article  CAS  Google Scholar 

  30. Rowlinson JS, Widom B (1982) Molecular theory of capillarity. Clarendon, Oxford

    Google Scholar 

  31. Rapaport DC (2004) The art of molecular dynamics simulation (chapter 2), 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  32. Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York

    Google Scholar 

  33. Rideal EK (1922) Phil Mag 44:1152–1159

    CAS  Google Scholar 

  34. Bosanquet CH (1923) Phil Mag 45:525–531

    CAS  Google Scholar 

  35. Ranabothu SR, Karnezis C, Dai LL (2005) J Colloid Interface Sci 288:213–221

    Article  CAS  Google Scholar 

  36. Petrov JG, Ralston J, Schneemilch M, Hayes RA (2003) Langmuir 19:2795–2801

    Article  CAS  Google Scholar 

  37. Bayer IS, Megaridis CM (2006) J Fluid Mech 558:415–449

    Article  Google Scholar 

  38. Ahadian S, Kawazoe Y (2009) Mater Trans 50:1157–1160

    Article  Google Scholar 

  39. Karniadakis G, Beskok A, Aluru NR (2005) Microflows and nanoflows: fundamentals and simulation, 2nd edn. Springer, New York

    Google Scholar 

  40. Blake TD, De Coninck J (2004) Colloids Surf A: Physicochem Eng Asp 250:395–402

    Article  CAS  Google Scholar 

  41. Caupin F, Cole MW, Balibar S, Treiner J (2008) Eur Phys Lett 82:56004

    Article  Google Scholar 

  42. Yung KL, Kong J, Xu Y (2007) Polymer 48:7645–7652

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S. Ahadian greatly appreciates Dr. Dimitrov, Professor Milchev, and Professor Binder. The authors sincerely appreciate the staff of the Center for Computational Materials Science of the Institute for Materials Research (IMR), Tohoku University, for its continuous support of the supercomputing facilities. This work was supported (in part) by the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ahadian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahadian, S., Kawazoe, Y. A molecular dynamics approach to examine the kinetics of the capillary imbibition of a polymer at nanoscale. Colloid Polym Sci 287, 961–967 (2009). https://doi.org/10.1007/s00396-009-2052-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2052-x

Keywords

Navigation