Skip to main content
Log in

Rheological behavior of PAA–C n TAB complex: influence of PAA charge density and surfactant tail length in PAA semidilute aqueous solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Interactions between anionic polyelectrolyte, poly(acrylic acid) (PAA), and cationic surfactant, alkyltrimethylammonium bromide (C n TAB), were investigated by rheological measurements in semidilute PAA solution. The dependences of the rheological behavior on the chain length of the surfactant, PAA neutralization degree, and temperature were discussed. The results revealed that both dodecyl and cetyltrimethylammonium bromides (C12TAB and C16TAB) could increase the viscosity of PAA solution when the surfactant amounts surpassed a critical surfactant concentration (C c), and C c of C16TAB was lower than that of C12TAB at same PAA neutralization degree. The increase of viscosity is attributed to the surfactant micelles bridging of the polymer chains and confine the mobility PAA chain. On the other hand, it is found that the hydrogen bonding also played an important role in the PAA–C n TAB system, especially in lower neutralization degree PAA solution, which results in the viscosity increase rapidly with the added surfactant into lower neutralization degree PAA solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Holmberg K, Jonsson B, Kronberg B, Bo L (2002) Surfactants and polymers in aqueous solution. Wiley, West Sussex, England

    Book  Google Scholar 

  2. Jain N, Trabelsi S, Guillot S, McLoughlin D, Langevin D, Letellier P, Turmine M (2004) Langmuir 20:8496–8503

    Article  CAS  Google Scholar 

  3. Colby RH, Plucktaveesak N, Bromberg L (2001) Langmuir 17:2937–2941

    Article  CAS  Google Scholar 

  4. Hansson P (2001) Langmuir 17:4167–4180

    Article  CAS  Google Scholar 

  5. Plucktaveesak N, Konop AJ, Colby RH (2003) J Phys Chem B 107:8166–8171

    Article  CAS  Google Scholar 

  6. Merta J, Stenius P (1997) Colloid Surface A 122:243–255

    Article  CAS  Google Scholar 

  7. Yan Y, Li L, Hoffmann H (2006) J Phys Chem B 110:1949–1954

    Article  CAS  Google Scholar 

  8. Hansson P, Schneider S, Lindman B (2002) J Phys Chem B 106:9777–9793

    Article  CAS  Google Scholar 

  9. Nause RG, Hoagland DA, Strey HH (2008) Macromolecules 41:4012–4019

    Article  CAS  Google Scholar 

  10. Matsuda T, Annaka M (2008) Langmuir 24:5707–5713

    Article  CAS  Google Scholar 

  11. Konop AJ, Colby RH (1999) Langmuir 15:58–65

    Article  CAS  Google Scholar 

  12. Ritacco H, Kurlat D, Langevin D (2003) J Phys Chem B 107:9146–9158

    Article  CAS  Google Scholar 

  13. Zhou SQ, Chu B (2000) Adv Mater 12:545–556

    Article  CAS  Google Scholar 

  14. Hansson P, Almgren M (1994) Langmuir 10:2115–2124

    Article  CAS  Google Scholar 

  15. Thünemann AF, Müller M, Dautzenberg H, Joanny J-F, Löwen H (2004) Adv Polym Sci 166:113–171

    Google Scholar 

  16. Fundin J, Hansson P, Brown W, Lidegran I (1997) Macromolecules 30:1118–1126

    Article  CAS  Google Scholar 

  17. Lim PFC, Chee LY, Chen SB, Chen BH (2003) J Phys Chem B 107:6491–6496

    Article  CAS  Google Scholar 

  18. Kiefer JJ, Somasundaran P, Ananthapadmanabhan KP (1993) Langmuir 9:1187–1192

    Article  CAS  Google Scholar 

  19. Yoshida K, Dubin PL (1999) Colloid Surface A 147:161–167

    Article  CAS  Google Scholar 

  20. Yoshida K, Sokhakian S, Dubin PL (1998) J Colloid Interf Sci 205:257–264

    Article  CAS  Google Scholar 

  21. Wang C, Tam KC (2004) J Phys Chem B 108:8976–8982

    Article  CAS  Google Scholar 

  22. Kong L, Cao M, Hai M (2007) J Chem Eng Data 52:721–726

    Article  CAS  Google Scholar 

  23. Guillot S, McLoughlin D, Jain N, Delsanti M, Langevin D (2003) J Phys-condens Mat 15:S219–S224

    Article  CAS  Google Scholar 

  24. Dobrynin AV, Colby RH, Rubinstein M (1995) Macromolecules 28:1859–1871

    Article  CAS  Google Scholar 

  25. Dobrynin AV, Rubinstein M (2005) Prog Polym Sci 30:1049–1118

    Article  CAS  Google Scholar 

  26. Wu Q, Du M, Shangguan Y, Zhou J, Zheng Q (2009) Colloid Surface A 332:13–18

    Article  CAS  Google Scholar 

  27. Anghel DF, Saito S, Baran A, Iovescu A, Cornitescu M (2007) Colloid Polym Sci 285:771–779

    Article  CAS  Google Scholar 

  28. Bakshi MS, Sachar S (2004) Colloid Polym Sci 282:993–999

    Article  CAS  Google Scholar 

  29. Kogej K, Skerjanc J (1999) Langmuir 15:4251–4258

    Article  CAS  Google Scholar 

  30. Wang C, Tam KC (2005) J Phys Chem B 109:5156–5161

    Article  CAS  Google Scholar 

  31. Chakraborty T, Chakraborty I, Ghosh S (2006) Langmuir 22:9905–9913

    Article  CAS  Google Scholar 

  32. Hansson P, Almgren M (1995) J Phys Chem 99:16684–16693

    Article  CAS  Google Scholar 

  33. Trabelsi S, Raspaud E, Langevin D (2007) Langmuir 23:10053–10062

    Article  CAS  Google Scholar 

  34. Proietti N, Amato ME, Masci G, Segre AL (2002) Macromolecules 35:4365–4372

    Article  CAS  Google Scholar 

  35. Pryamitsyn V, Ganesan V (2006) J Rheol 50:655–683

    Article  CAS  Google Scholar 

  36. Du M, Gong JH, Zheng Q (2004) Polymer 45:6725–6730

    Article  CAS  Google Scholar 

  37. Lipatov YS, Shumsky VF, Getmanchuk IP, Gorbatenko AN (1982) Rheol Acta 21:270–279

    Article  CAS  Google Scholar 

  38. Rubinstein M, Colby RH, Dobrynin AV (1994) Phys Rev Lett 73:2776–2779

    Article  CAS  Google Scholar 

  39. Dou SC, Colby RH (2006) J Polym Sci Pol Phys 44:2001–2013

    Article  CAS  Google Scholar 

  40. Boris DC, Colby RH (1998) Macromolecules 31:5746–5755

    Article  CAS  Google Scholar 

  41. Hansson P, Almgren M (1996) J Phys Chem 100:9038–9046

    Article  CAS  Google Scholar 

  42. Plucktaveesak N (2003) Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems. Doctor Dissertation, Pennsylvania State University

  43. He Y, Zhu B, Inoue Y (2004) Prog Polym Sci 29:1021–1051

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Key Program of the National Natural Science Foundation of China (No. 50633030)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Du, M., Ye, T. et al. Rheological behavior of PAA–C n TAB complex: influence of PAA charge density and surfactant tail length in PAA semidilute aqueous solution. Colloid Polym Sci 287, 911–918 (2009). https://doi.org/10.1007/s00396-009-2045-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2045-9

Keywords

Navigation