Skip to main content
Log in

The aggregation of nonionic surfactants in the presence of poly(methacrylic acid)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The solution properties of homogeneous hexaethylene and octaethylene glycol mono(n-dodecyl) ethers, C12E6 and C12E8, respectively, and octaethylene glycol mono(n-decyl) ether, C10E8, with poly(methacrylic acid) (PMA) were investigated by dye solubilization, surface tension, fluorescence, viscosity, and pH measurements. The data were discussed regarding non-cooperative and cooperative binding of surfactant to polymer. Whereas in the interaction with poly(acrylic acid) (PAA), the critical aggregation concentrations (cac or T 1) of these surfactants were lower than the respective critical micelle concentration (cmc), in that with the more hydrophobic PMA, T 1’s of C12E6 and C12E8 were higher than the respective cmc, but that of C10E8 was lower than its cmc. These may be ascribed to the hydrophobic microdomains (HMD) of the PMA coil in water, probably in its inside. It is considered that some surfactants are bound first to the HMD non-cooperatively and then they are abruptly bound cooperatively at T 1. This raises T 1 higher than cmc when the cmc is low, and the amount bound by the HMD is relatively large and vice versa. T 1 of C12E6 or C12E8 is the former case, and that of C10E8 is the latter. Thus, different from PAA, T 1 for PMA + nonionic surfactant system consists of the amount of non-cooperative binding and the cac of the cooperative binding in equilibrium. Therefore, this T 1 has a different meaning from that for PAA and should be called apparent T 1. As the binding to the HMD is dependent on PMA concentration and cac is not, which is like in the PAA system, separation of apparent T 1 from the HMD binding was achieved by extrapolating T 1’s to zero PMA concentration (denoted intrinsic T 1). This value for C12E8 was found to be lower than the respective cmc and also lower than the respective T 1 for PAA. With increase in surfactant concentration, the pH of PMA solution rose and demonstrated a peak. This pH rise and fall may be induced by loosening of the HMD coil due to binding increase and by rearrangement of PMA + surfactant complex in high surfactant concentrations region. By raising the initial pH, the HMD were loosened; consequently, T 1 rose a little, and at higher pH, no surfactant binding took place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goddard ED, Ananthapadmanabhan KP (eds) (1993) Interactions of surfactants with polymers and proteins. CRC Press, Boca Raton, FL

    Google Scholar 

  2. Kwak JCT (ed) (1998) Polymer–surfactant systems. Marcel Dekker, New York

    Google Scholar 

  3. Saito S, Taniguchi T (1971) Kolloid Z 248:1039

    Article  CAS  Google Scholar 

  4. Saito S (1979) Colloid Polym Sci 257:266

    Article  CAS  Google Scholar 

  5. Saito S (1989) J Am Oil Chem Soc 66:987

    CAS  Google Scholar 

  6. Petrova T, Rashkov I, Baranovsky V, Borisov G (1991) Eur Polym J 27:189

    Article  CAS  Google Scholar 

  7. Baranovsky V, Shenkov S, Rashkov I, Borisov G (1991) Eur Polym J 27:643

    Article  Google Scholar 

  8. Baranovsky V, Petrova T, Rashkov I (1991) Eur Polym J 27:1045

    Article  Google Scholar 

  9. Baranovsky V, Shenkov S, Rashkov I, Borisov G (1992) Eur Polym J 28:475

    Article  Google Scholar 

  10. Baranovsky VY, Shenkov S (1994) Eur Polym J 30:601

    Article  CAS  Google Scholar 

  11. Wasserman AM, Yasina LL, Aliev II, Doseva V, Baranovsky VY (2004) Colloid Polym Sci 282:402

    Article  CAS  Google Scholar 

  12. Saito S (1987) Polymer–surfactant interactions. In: Schick MJ (ed) Nonionic surfactants physical chemistry. Marcel Dekker, New York, pp 881–926

    Google Scholar 

  13. Saito S, Anghel DF (1998) Interactions of polymers and nonionic surfactants. In: Kwak JCT (ed) Polymer–surfactant systems. Marcel Dekker, New York, pp 357–408

    Google Scholar 

  14. Anghel DF, Saito S (2004) Recent Res Devel Surface Colloids 1:301

    CAS  Google Scholar 

  15. Saito S (1990) Rev Roum Chim 35:821

    CAS  Google Scholar 

  16. Anghel DF, Winnik FM, Galaţanu N (1999) Colloids Surf A 149:339

    Article  CAS  Google Scholar 

  17. Saito S (1977) Tenside 14:113

    CAS  Google Scholar 

  18. Galaţanu AN, Chronakis IS, Anghel DF, Khan A (2000) Langmuir 16:4922

    Article  CAS  Google Scholar 

  19. Anghel DF, Saito S, Iovescu A, Băran A (1994) Colloids Surf A 90:89

    Article  CAS  Google Scholar 

  20. Anghel DF, Saito S, Băran A, Iovescu A (1998) Langmuir 14:5342

    Article  CAS  Google Scholar 

  21. Anghel DF, Saito S, Băran A, Iovescu A (2005) Rev Roum Chim 50:570

    Google Scholar 

  22. Vasilescu M, Anghel DF, Almgren M, Hansson P, Saito S (1997) Langmuir 13:6951

    Article  CAS  Google Scholar 

  23. Raicu V, Băran A, Iovescu A, Anghel DF, Saito S (1997) Colloid Polym Sci 275:372

    Article  CAS  Google Scholar 

  24. Raicu V, Băran A, Anghel DF, Saito S, Iovescu A, Rădoi C (1998) Progr Colloid Polym Sci 109:136

    Article  CAS  Google Scholar 

  25. Băran A, Iovescu A, Raicu V, Anghel DF, Saito S, Anghel C (2003) Ann West Univ Timis Ser Chem 12:909

    Google Scholar 

  26. Băran A, Iovescu A, Raicu V, Anghel DF, Saito S (2003) Ann West Univ Timis Ser Chem 12:847

    Google Scholar 

  27. Saito S (1994) J Colloid Interface Sci 165:505

    Article  CAS  Google Scholar 

  28. Kiefer J, Somasundaran P, Ananthapadmanabhan KP (1993) Langmuir 9:1187

    Article  CAS  Google Scholar 

  29. Katsuura H, Kawamura H, Manabe M, Maeda H (2002) Colloid Polym Sci 280:30

    Article  CAS  Google Scholar 

  30. Chu DY, Thomas JK (1986) J Am Chem Soc 108:6270

    Article  CAS  Google Scholar 

  31. Baranovsky VY, Shenkov S, Borisov G (1993) Eur Polym J 29:1137

    Article  CAS  Google Scholar 

  32. Thuresson K, Söderman O, Hansson P, Wang G (1996) J Phys Chem 100:4909

    Article  CAS  Google Scholar 

  33. Zana R (1998) Polyelectrolyte–surfactant interactions: polymer hydrophobicity, surfactant aggregation number and microstructure of the systems. In: Kwak JCT (ed) Polymer–surfactant systems. Marcel Dekker, New York, pp 409–454

    Google Scholar 

  34. D’Errico G, Ciccarelli D, Ortona O, Paduano L, Sartorio R (2004) J Colloid Interface Sci 270:490

    Article  CAS  Google Scholar 

  35. Goddard ED (1993) Polymer–surfactant interactions. In: Goddard ED, Ananthapadmanabhan KP (eds) Interactions of surfactants with polymers and proteins. CRC Press, Boca Raton, FL, pp 123–203

    Google Scholar 

  36. Maloney C, Huber K (1994) J Colloid Interface Sci 164:463

    Article  CAS  Google Scholar 

  37. Radlinska E, Gulik T, Lafuma F, Langevin D, Urbach W, Williams CE, Ober R (1995) Phys Rev Lett 74:4237

    Article  CAS  Google Scholar 

  38. Asnacios A, Klitzing R, Langevin D (2000) Colloids Surf A 167:189

    Article  CAS  Google Scholar 

  39. Nishikido N, Takahara T, Kobayashi H, Tanaka M (1982) Bull Chem Soc Jpn 55:3085

    Article  CAS  Google Scholar 

  40. Dai S, Tam KC (2005) Langmuir 21:7136

    Article  CAS  Google Scholar 

  41. Dong DC, Winnik MA (1984) Can J Chem 62:2560

    Article  CAS  Google Scholar 

  42. Kalyanasundaran K, Thomas JK (1977) J Am Chem Soc 99:2039

    Article  Google Scholar 

  43. Lynch I, Sjöström J, Piculell L (2005) J Phys Chem B 109:4252

    Article  CAS  Google Scholar 

  44. Wei YC, Hudson SM (1995) J Macromol Sci Rev Macromol Chem Phys C 35:15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Băran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anghel, D.F., Saito, S., Băran, A. et al. The aggregation of nonionic surfactants in the presence of poly(methacrylic acid). Colloid Polym Sci 285, 771–779 (2007). https://doi.org/10.1007/s00396-006-1617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1617-1

Keywords

Navigation