Skip to main content
Log in

Influence of clay modification on the properties of aramid-layered silicate nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanocomposites from organoclay and aromatic polyamide were prepared using solution intercalation method. Aramid chains were synthesised by reacting 4-aminophenylsulfone with isophthaloyl chloride in dimethylacetamide. Dodecylamine was used as a modifier to change the hydrophilic nature of montmorillonite into organophilic. Suitable quantities of organoclay were mixed in the aramid solution with high-speed stirring for homogeneous dispersion of the clay. Thin films cast from these materials after evaporating the solvent were characterised. The morphology of nanocomposites was determined by X-ray diffraction and TEM. Results revealed the formation of delaminated and disordered intercalated clay platelets in the aramid matrix. Mechanical data indicated improvement in the tensile strength and modulus with clay loading up to 6 wt.%. The glass transition temperature increased up to 20 wt.% organoclay, suggesting better cohesion between the two phases and thermal stability augmented with increasing clay loading. The water uptake reduced gradually as a function of organoclay showing decreased permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Komarneni S (1992) J Mater Chem 2:1219

    Article  CAS  Google Scholar 

  2. Yano Y, Usuki A, Kurauchi T, Kamigato O (1993) J Polym Sci Part A: Polym Chem 31:2493

    Article  CAS  Google Scholar 

  3. Zulfiqar S, Ahmad Z, Ishaq M, Saeed S, Sarwar MI (2007) J Mater Sci 42:93

    Article  CAS  Google Scholar 

  4. Giannelis EP (1996) Adv Mater 8:29

    Article  CAS  Google Scholar 

  5. Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP (1995) Adv Mater 7:154

    Article  CAS  Google Scholar 

  6. Sikka M, Cerini LN, Ghosh SS, Winey KI (1996) J Polym Sci Part B: Polym Phys 34:1443

    Article  CAS  Google Scholar 

  7. Zilg C, Mulhaupt R, Finter J (1999) Macromol Chem Phys 200:661

    Article  CAS  Google Scholar 

  8. Messersmith PB, Giannelis EP (1994) Chem Mater 6:1719

    Article  CAS  Google Scholar 

  9. Xu R, Manias E, Snyder AJ, Runt J (2001) Macromolecules 34:337

    Article  CAS  Google Scholar 

  10. Burnside SD, Giannelis EP (1995) Chem Mater 7:1597

    Article  CAS  Google Scholar 

  11. Kausar A, Zulfiqar S, Shabbir S, Ishaq M, Sarwar MI (2007) Polym Bull 59:457

    Article  CAS  Google Scholar 

  12. Bibi N, Sarwar MI, Ishaq M, Ahmad Z (2007) Polym Polym Compos 15:313

    CAS  Google Scholar 

  13. Dekany I, Szanto F, Weiss A, Lagaly G (1985) Ber Bunsenges Phys Chem 89:62

    CAS  Google Scholar 

  14. Dekany I, Szanto F, Nagy LG (1986) J. Colloid Interface Sci 109:376

    Article  CAS  Google Scholar 

  15. Regdon I, Kiraly Z, Dekany I, Lagaly G (1994) Colloid Polym Sci 272:1129

    Article  CAS  Google Scholar 

  16. Lagaly G, Dekany I (2005) Adv Colloid Interface Sci 114–115:189

    Article  Google Scholar 

  17. Okada A, Kawasumi M, Usuki A, Kojimi Y, Kurauchi T, Kamigato O (1990) In: Schaefer DW, Mark JE, (eds.), Mater Res Symp Proc, Pittsburgh, vol. 171, p. 45

  18. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1179

    Article  CAS  Google Scholar 

  19. Hoffmann B, Kressler J, Stopplemann G, Friedrich C, Kim G-M (2000) Colloid Polym Sci 278:629

    Article  CAS  Google Scholar 

  20. Liu X, Wu Q, Zhang Q, Berglund LA, Mo Z (2002) Polym Bull 48:381

    Article  CAS  Google Scholar 

  21. Hasegawa N, Okamoto H, Kato M, Usuki A, Sato N (2003) Polymer 44:2933

    Article  CAS  Google Scholar 

  22. Ayyer RK, Leonov AI (2004) Rheol Acta 43:283

    Article  CAS  Google Scholar 

  23. Cassidy PE (1980) Thermally Stable Polymers. Dekker, New York

    Google Scholar 

  24. Frazer AH (1968) High temperature resistant polymers. Wiley, New York

    Google Scholar 

  25. Yang HH (1993) Kevlar Aramid Fiber. Wiley, New York

    Google Scholar 

  26. Yang HH (1989) Aromatic high-strength fibers. Wiley, New York

    Google Scholar 

  27. Ahmad Z, Sarwar MI, Mark JE (1998) J Appl Polym Sci 70:297

    Article  CAS  Google Scholar 

  28. Sarwar MI, Zulfiqar S, Ahmad Z (2007) Colloid Polym Sci 285:1733

    Article  CAS  Google Scholar 

  29. Zulfiqar S, Ahmad Z, Sarwar MI (2007) Colloid Polym Sci 285:1749

    Article  CAS  Google Scholar 

  30. Zulfiqar S, Lieberwirth I, Sarwar MI (2008) Chem Phys 344:202

    Article  CAS  Google Scholar 

  31. Sarwar MI, Zulfiqar S, Ahmad Z (2008) J Sol-Gel Sci Technol 45:89

    Article  CAS  Google Scholar 

  32. Zulfiqar S, Sarwar MI (2008) Scripta Mater 59:436

    Article  CAS  Google Scholar 

  33. Sarwar MI, Zulfiqar S, Ahmad Z (2008) Polym Intl 57:292

    Article  CAS  Google Scholar 

  34. Zulfiqar S, Ishaq M, Sarwar MI (2008) Surf Interface Anal 40:1195

    Article  CAS  Google Scholar 

  35. Sarwar MI, Zulfiqar S, Ahmad Z (2007) J Sol-Gel Sci Technol 44:41

    Article  CAS  Google Scholar 

  36. Zulfiqar S, Ahmad Z, Sarwar MI (2008) Polym. Adv Technol 19:1720

    Article  CAS  Google Scholar 

  37. Sarwar MI, Zulfiqar S, Ahmad Z (2009) Polym Compos 30:95

    Article  CAS  Google Scholar 

  38. Zulfiqar S, Lieberwirth I, Ahmad Z, Sarwar MI (2008) Polym Eng Sci 48:1624

    Article  CAS  Google Scholar 

  39. Zulfiqar S, Lieberwirth I, Ahmad Z, Sarwar MI (2008) Acta Mater 56:4905

    Article  CAS  Google Scholar 

  40. Wei Z, Moldowan JM, Paytan A (2006) Org Geochem 37:891

    Article  CAS  Google Scholar 

  41. Zulfiqar S, Sarwar MI (2009) High Perform Polym. doi:10.1177/0954008308089114

  42. Zulfiqar S, Ishaq M, Ahmad Z, Sarwar MI (2008) Polym Adv Technol 19:1250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support provided by Higher Education Commission of Pakistan (HEC) through project research grant 20-23-ACAD (R) 03-410. Sonia Zulfiqar is thankful to HEC for awarding her fellowship under “International Research Support Initiative Program” (IRSIP) to pursue research work at Max Planck Institute for Polymer Research (MPI-P), Mainz, Germany. Special thanks are due to Prof. Dr. Gerhard Wegner, Director, MPI-P for providing the characterisation facilities for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ilyas Sarwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zulfiqar, S., Rafique, M., Shaukat, M.S. et al. Influence of clay modification on the properties of aramid-layered silicate nanocomposites. Colloid Polym Sci 287, 715–723 (2009). https://doi.org/10.1007/s00396-009-2011-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2011-6

Keywords

Navigation