Skip to main content
Log in

Effect of size of tetraalkylammonium counterions on the temperature dependent micellization of AOT in aqueous medium

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Different tetraalkylammonium, viz. N+(CH3)4, N+(C2H5)4, N+(C3H7)4, N+(C4H9)4 along with simple ammonium salts of bis (2-ethylhexyl) sulfosuccinic acid have been prepared by ion-exchange technique. The critical micelle concentration of surfactants with varied counterions have been determined by measuring surface tension and conductivity within the temperature range 283–313 K. Counterion ionization constant, α, and thermodynamic parameters for micellization process viz., \(\Delta G_m^{\text{0}} \), \(\Delta H_m^{\text{0}} \), and \(\Delta S_m^{\text{0}} \) and also the surface parameters, Γmax and Amin, in aqueous solution have been determined. Large negative \(\Delta G_m^{\text{0}} \)of micellization for all the above counterions supports the spontaneity of micellization. The value of standard free energy, \(\Delta G_m^{\text{0}} \), for different counterions followed the order \({\text{N}}^{\text{ + }} \left( {{\text{CH}}_{\text{3}} } \right)_4 >{\text{NH}}_{\text{4}}^{\text{ + }} >{\text{Na}}^{\text{ + }} >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{2}} {\text{H}}_5 } \right)_{\text{4}} {\text{ $>$ N}}^{\text{ + }} \left( {{\text{C}}_{\text{3}} {\text{H}}_{\text{7}} } \right)_4 >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{4}} {\text{H}}_{\text{9}} } \right)_4 \), at a given temperature. This result can be well explained in terms of bulkiness and nature of hydration of the counterion together with hydrophobic and electrostatic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yin H, Lei S, Zhu S, Huang J, Ye J (2006) Chem Eur J 12:2825

    Article  CAS  Google Scholar 

  2. Paul A, Griffiths PC, Pettersson E, Stilbs P, Bales BL, Zana R, Heenan RK (2004) J Phys Chem B 108:3810

    Article  CAS  Google Scholar 

  3. Griffiths PC, Paul A, Heenan RK, Penfold J, Ranganathan R, Bales BL (2005) J Phys Chem B 109:15775

    Article  CAS  Google Scholar 

  4. Benrraou M, Bales BL, Zana R (2003) J Phys Chem B 107:13432

    Article  CAS  Google Scholar 

  5. Shimizu S, Pires PAR, El Seoud OA (2004) Langmuir 20:9551

    Article  CAS  Google Scholar 

  6. Pisárčik K, Devínsky F, Lacko I (2003) Acta Facult Pherm Univ Comenianae 50:119

    Google Scholar 

  7. Tiddy GJT (1980) Phys Rev 57:1

    CAS  Google Scholar 

  8. Khan A, Fontell K, Lindman B (1984) J Colloid Interface Sci 101:193

    Article  CAS  Google Scholar 

  9. Lindman B, Puyal M-C, Kamenka N, Rymden R, Stilbs P (1984) J Phys Chem 88:5048

    Article  CAS  Google Scholar 

  10. Mukerjee P (1967) Adv Colloid Interface Sci 1:241

    Article  CAS  Google Scholar 

  11. Corkill JM, Goodman JF (1962) Trans Faraday Soc 58:206

    Article  CAS  Google Scholar 

  12. Baumuller W, Hoffmann H, Ulbricht W, Tondre C, Zana R (1978) J Colloid Interface Sci 64:418

    Article  Google Scholar 

  13. Wang Y, Dubin PL, Zang H (2001) Langmuir 17:1670

    Article  CAS  Google Scholar 

  14. Oda R, Narayanan J, Hassan PA, Manohar C, Salkar RA, Kern F, Candau S (1998) Langmuir 14:4364

    Article  CAS  Google Scholar 

  15. Soldi V, Keiper J, Romsted LS, Cuccovia IM, Chaimovich H (2000) Langmuir 16:59

    Article  CAS  Google Scholar 

  16. Kawait T, Yasuda Y, Kon-no K (1995) Bull Chem Soc Jpn 68:2175

    Article  Google Scholar 

  17. Eastoe J, Robenson BH, Heenan RK (1993) Langmuir 9:2820

    Article  CAS  Google Scholar 

  18. Temsamani MB, Maeck M, Hassani IE, Hurwitz HD (1998) J Phys Chem B 102:3335

    Article  CAS  Google Scholar 

  19. Acosta E, Bisceglia M, Fernandez JC (2000) Colloids Surf A 161:417

    Article  CAS  Google Scholar 

  20. Moroni MA, Minardi RM, Schulz PC, Puig JE, Rodríguez JL (1998) Colloid Polym. Sci. 276:738

    Article  Google Scholar 

  21. Stokkeland I, Skauge A, Høiland H (1987) J Soln Chem 16:45

    Article  CAS  Google Scholar 

  22. Heuvelsland W, de Visser C, Somsen G (1978) J Phys Chem 82:29

    Article  CAS  Google Scholar 

  23. Nakagaki M, Handa T (1984) ACS Symposium Series 253:73

    Article  CAS  Google Scholar 

  24. Tanford C (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes, vol. 2. Wiley, New York

    Google Scholar 

  25. Chakraborty A, Chakraborty S, Saha SK (2007) J Dispersion Sci Technol 28:984

    Article  CAS  Google Scholar 

  26. La Mesa C (1990) J Phys Chem 94:323

    Article  Google Scholar 

  27. Suarez MJ, Lopez-Fontan JL, Sarmiento F, Mosquera V (1999) Langmuir 15:5265

    Article  CAS  Google Scholar 

  28. Myers D (1992) Surfactant science and technology. VCH, New York

    Google Scholar 

  29. Zana R (1996) Langmuir 12:1208

    Article  CAS  Google Scholar 

  30. Mukhim T, Ismail K (2005) J Surface Sci Technol 21:113

    CAS  Google Scholar 

  31. Su TJ, Lu JR, Thomas RK, Penfold J (1997) J Phys Chem B 101:937

    Article  CAS  Google Scholar 

  32. Weckström K, Hanu K, Rosenholm JB (1994) J Chem Soc, Faraday Trans 90:733

    Article  Google Scholar 

  33. Morori A (1992) Micelles: Theoretical and applied aspects. Planum, New York

    Google Scholar 

  34. Evans DF, Ninham BW (1986) J Phys Chem 90:226

    Article  CAS  Google Scholar 

  35. Bedo Z, Berecz E, Laktos I (1992) Colloid Polym Sci 270:799

    Article  CAS  Google Scholar 

  36. González-Pérez A, Czapkiewicz J, Del Castillo JL, Rodríguez JR (2004) Colloid Polym Sci 282:1359

    Article  CAS  Google Scholar 

  37. Galán JJ, González-Pérez A, Rodríguez JR (2003) J Therm Anal Cal 72:465

    Article  Google Scholar 

  38. Shugihara G, Nakano TY, Sulthana SB, Rakshit AK (2001) J Oleo Sci 50:29

    Google Scholar 

  39. Umlong IM, Ismail K (2005) J Colloid Interface Sci 291:529

    Article  CAS  Google Scholar 

  40. Rosen MJ, Cohen AW, Dahanayake M, Hua X (1982) J Phys Chem 86:541

    Article  CAS  Google Scholar 

  41. Oh SG, Shah DO (1993) J Phys Chem 97:284

    Article  CAS  Google Scholar 

  42. Carnero Ruiz C, Díaz-López L, Aguiar J (2007) J Colloid Interface Sci 305:293

    Article  CAS  Google Scholar 

  43. Sulthana SB, Bhat SGT, Rakshit AK (1997) Langmuir 13:4562

    Article  CAS  Google Scholar 

  44. Kang K, Kim H, Lim K (2000) Colloids Surfaces A 189:113

    Article  Google Scholar 

Download references

Acknowledgement

Financial support from the University Grants Commission, New Delhi, India, under Special Assistance Program (SAP, No. F/540/6/DRS/2002) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, A., Saha, S.K. & Chakraborty, S. Effect of size of tetraalkylammonium counterions on the temperature dependent micellization of AOT in aqueous medium. Colloid Polym Sci 286, 927–934 (2008). https://doi.org/10.1007/s00396-008-1850-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1850-x

Keywords

Navigation