Skip to main content
Log in

Polysaccharide-modified iron oxide nanoparticles as an effective magnetic affinity adsorbent for bovine serum albumin

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The magnetic separation technique based on magnetic iron oxide nanoparticles (MNPs) has potential applications in protein adsorption and purification, enzyme immobilization, cell sorting, nucleic acid detachment, and drug release. However, the naked MNPs are often insufficient for their hydrophilicity, colloidal stability, and further functionalization. To overcome these limitations, chitosan was firstly carboxymethylated and then covalently conjugated on the surface of the MNPs ranging in size from about 5 to 15 nm, which were prepared by co-precipitating iron (II) and iron (III) in alkaline solution and then treating under hydrothermal conditions. It was found that such modification did not result in the phase change of the MNPs, and the resultant modified nanoparticles were still superparamagnetic. In particular, the colloidal stability of MNPs in aqueous suspension was improved after the surface modification. By investigating the adsorption of bovine serum albumin (BSA) on the modified MNPs, it was observed that the adsorption capacity of the BSA on the modified MNPs increased rapidly within several minutes and then reached the maximum value at about 10 min. The adsorption equilibrium isotherm could be fitted well by the Langmuir model. The medium pH affected greatly the adsorption of the BSA. The maximum adsorption of the BSA occurred at the pH value close to the isoelectric point of the BSA, with a saturation adsorption amount of 94.45 mg/g (25 °C). For the BSA feed concentration of 1.017 mg/ml, a high desorption percentage of 91.5% could be achieved under an alkaline condition (pH 9.4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abudiab T, Beitle RR Jr (1998) J Chromatogr A 795:211–215

    Article  CAS  Google Scholar 

  2. Peng ZG, Hidajat K, Uddin MS (2004) J Colloid Interface Sci 271:277–283

    Article  CAS  Google Scholar 

  3. Liao MH, Chen DH (2001) Biotechnol Lett 23:1723–1727

    Article  CAS  Google Scholar 

  4. Ito A, Shinkai M, Honda H, Kobayashi T (2005) J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  5. Neuberger T, Schöpf B, Hofmann H, Hofmann M, Rechenberg B (2005) J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  6. Gupta AK, Curtis ASG (2004) J Mater Sci Mater Med 15:493–496

    Article  CAS  Google Scholar 

  7. Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L (2002) J Am Chem Soc 124:2856–2857

    Article  CAS  Google Scholar 

  8. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KV, Ulman A, Cowman M, Gross RA (2003) J Am Chem Soc 125:1684–1685

    Article  CAS  Google Scholar 

  9. Gelinas S, Finch JA, Bohme P (2000) Colloids Surf A 172:103–112

    Article  CAS  Google Scholar 

  10. Gu HW, Yang ZM, Gao JH, Chang CK, Xu B (2005) J Am Chem Soc 127:34–35

    Article  CAS  Google Scholar 

  11. Wang DS, He JB, Rosenzweig N, Rosenzweig Z (2004) Nano Lett 4:409–413

    Article  CAS  Google Scholar 

  12. Gupta AK, Gupta M (2005) Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  13. Bacri JC, Perzynski R, Salin D, Cabuil V, Massart R (1990) J Magn Magn Mater 85:27–32

    Article  CAS  Google Scholar 

  14. Shen L, Stachowiak A, Fateen SEK, Laibinis PE, Hatton TA (2001) Langmuir 17:288–299

    Article  CAS  Google Scholar 

  15. Mendenhall GD, Geng Y, Hwang J (1996) J Colloid Interface Sci 184:519–526

    Article  CAS  Google Scholar 

  16. Lee J, Isobe T, Senna M (1996) J Colloid Interface Sci 177:490–494

    Article  CAS  Google Scholar 

  17. Harris LA, Goff JD, Carmichael AY, Riffle JS, Harburn JJ, St Pierre TG, Saunders M (2003) Chem Mater 15:1367–1377

    Article  CAS  Google Scholar 

  18. Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T (2004) Chem Mater 16:3489–3496

    Article  CAS  Google Scholar 

  19. Yu S, Chow GM (2004) J Mater Chem 14:2781–2786

    Article  CAS  Google Scholar 

  20. Kim BS, Qiu JM, Wang JP, Taton TA (2005) Nano Lett 5:1987–1991

    Article  CAS  Google Scholar 

  21. Ditsch A, Laibinis PE, Wang DIC, Hatton TA (2005) Langmuir 21:6006–6018

    Article  CAS  Google Scholar 

  22. Zhang Y, Kohler N, Zhang M (2002) Biomaterials 23:1553–1561

    Article  CAS  Google Scholar 

  23. Kohler N, Fryxell GE, Zhang MA (2004) J Am Chem Soc 126:7206–7211

    Article  CAS  Google Scholar 

  24. Hu F, Neoh KG, Cen L, Kang ET (2006) Biomacromolecules 7:809–816

    Article  CAS  Google Scholar 

  25. Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Sze R, Hallahan A, Olson J, Zhang M (2005) Nano Lett 5:1003–1008

    Article  CAS  Google Scholar 

  26. Martino AD, Sittinger M, Risbud MV (2005) Biomaterials 26:5983–5990

    Article  Google Scholar 

  27. Majeti NV, Ravi K (2000) React Funct Polym 46:1–27

    Article  Google Scholar 

  28. Wang GH, Zhang LM (2006) J Phys Chem B 110:24864–24868

    Article  CAS  Google Scholar 

  29. Kim DK, Mikhaylova M, Zhang Y, Muhammed M (2003) Chem Mater 15:1617–1627

    Article  CAS  Google Scholar 

  30. Chen XG, Park H (2003) Carbohydr Polym 53:355–357

    Article  CAS  Google Scholar 

  31. Chang YC, Chen DH (2005) J Colloid Interface Sci 283:446–451

    Article  CAS  Google Scholar 

  32. Haruma K (2000) Prog Polym Sci 25:1171–1210

    Article  Google Scholar 

  33. Saravanan P, Alam S, Mathur GN (2003) J Mater Sci Lett 22:1283–1285

    Article  CAS  Google Scholar 

  34. Huang SH, Liao MH, Chen DH (2003) Biotechnol Prog 19:1095–1100

    Article  CAS  Google Scholar 

  35. Flesch C, Bourgeat-Lami E, Mornet S, Duguet E, Delaite C, Dumas P (2005) J Polym Sci A Polym Chem 43:3221–3231

    Article  CAS  Google Scholar 

  36. Kamruzzaman Selim KM, Ha YS, Kim SJ, Chang Y, Kim TJ, Lee JH, Kang IK (2007) Biomaterials 28:710–716

    Article  CAS  Google Scholar 

  37. Tanyolac D, Ozdural AR (2001) J Appl Polym Sci 80:707–715

    Article  CAS  Google Scholar 

  38. Zhang LM, Chen DQ (2002) Colloids Surf A 205:231–236

    Article  CAS  Google Scholar 

  39. Zhang LM, Zhou YJ, Wang Y (2006) J Chem Technol Biotechnol 81:799–804

    Article  CAS  Google Scholar 

  40. Bajpai AK (2000) J Appl Polym Sci 78:933–940

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (20273086; 30470476; 20676155), NSFG (5003252; 039184; 6023103), Department of Science and Technology of Guangdong Province (2004B33101003), and NCET Program (NCET-04-0810) in Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, YY., Zhang, LM., Li, W. et al. Polysaccharide-modified iron oxide nanoparticles as an effective magnetic affinity adsorbent for bovine serum albumin. Colloid Polym Sci 285, 1193–1199 (2007). https://doi.org/10.1007/s00396-007-1672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1672-2

Keywords

Navigation