Skip to main content
Log in

The relationship of conductivity to the morphology and crystallinity of polyaniline controlled by water content via reverse microemulsion

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Conducting polyaniline (PANI) with the controllable morphology and crystallinity were successfully synthesized with different water content (\(W_{0} = {{\left[ {{\text{H}}_{2} {\text{O}}} \right]}} \mathord{\left/ {\vphantom {{{\left[ {{\text{H}}_{2} {\text{O}}} \right]}} {{\left[ {{\text{AOT}}} \right]}}}} \right. \kern-\nulldelimiterspace} {{\left[ {{\text{AOT}}} \right]}}\)) in the reverse microemulsion stabilized with sodium bis(2-ethylhexyl)-sulfosuccinate (AOT). In the microemulsion, the systems containing the different amounts of water will show the different phase behaviors and structures. The influence of water content on morphology and crystallinity of conducting PANI was characterized by a number of techniques such as Fourier transform infrared spectra, UV–Visible, scanning electron microscopy, transmission electron microscopy, and X-ray powder diffraction and conductivity. In particular, we focus on the understanding of the relationship between the morphology and the crystallinity and the conductivity of PANI powder. With the increasing of the water content (W 0 = 13.9, 27.8, 55.5, and 111.1) in the microemulsion system, the morphology and the crystallinity obviously changed and the values of relative conductivity are 0.05, 0.11, 2.7, and 1.8 S/cm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. MacDiarmid AG, Chiang JC, Halpern M, Huang WS, Mu SL, Somasiri NLD, Wu W, Yaniger SI (1985) Mol Cryst Liq Cryst 121:173–180

    CAS  Google Scholar 

  2. Chan HSO, Gan LM, Chew CH, Ma L, Seow SH (1993) J Mater Chem 3:1109–1115

    Article  CAS  Google Scholar 

  3. Mazeikiene R, Malinauskas A (2004) Mater Chem Phys 83:184–192

    Article  CAS  Google Scholar 

  4. Liu W, Kumar J, Tripathy S (2002) Langmuir 18:9696–9704

    Article  CAS  Google Scholar 

  5. Thiyagarajan M, Samuelson LA, Kumar J, Cholli AL (2003) J Am Chem Soc 125:11502–11503

    Article  CAS  Google Scholar 

  6. Marie E, Rothe R, Antonietti M, Landfester K (2003) Macromolecules 36:3967–3973

    Article  CAS  Google Scholar 

  7. Kim BJ, Oh SG, Han MG, Im SS (2000) Langmuir 16:5841–5845

    Article  CAS  Google Scholar 

  8. Yan F, Xue G (1999) J Mater Chem 9:3035–3039

    Article  CAS  Google Scholar 

  9. Osterholm JE, Cao Y, Klavetter F, Smith P (1994) Polymer 35:2902–2906

    Article  CAS  Google Scholar 

  10. Kim D, Choi J, Kim JY, Han YK, Sohn D (2002) Macromolecules 35:5314–5316

    Article  CAS  Google Scholar 

  11. Chattopadhyay D, Chakraborty M, Mandal BM (2001) Polym Int 50:538–544

    Article  CAS  Google Scholar 

  12. Stejskal J, Špírková M, Riede A, Helmstedt M, Mokreva P, Prokeš J (1999) Polymer 40:2487–2492

    Article  CAS  Google Scholar 

  13. López-Quintela MA, Rivas J (1993) J Colloid Interface Sci 158:446–451

    Article  Google Scholar 

  14. Zhou Y, Freitag M, Hone J, Staii C, Johnson AT (2003) Appl Phys Lett 83:3800–3802

    Article  CAS  Google Scholar 

  15. MacDiarmid AG, Epstein AJ (1995) Synth Met 69:85–92

    Article  CAS  Google Scholar 

  16. Luzny W, Banka E (2000) Macromolecules 33:425–429

    Article  CAS  Google Scholar 

  17. McCall RP, Ginder JM, Roe MG, Asturias GE, Scherr EM, Macdiarmid AG, Epstein AJ (1989) Phys Rev B 39:10174–10178

    Article  CAS  Google Scholar 

  18. Zheng W, Angelopoulos M, Epstein AJ, MacDiarmid AG (1997) Macromolecules 30:2953–2955

    Article  CAS  Google Scholar 

  19. Li Q, Li T, Wu J (2000) J Phys Chem B 104:9011–9016

    Article  CAS  Google Scholar 

  20. Li Q, Li T, Wu J (2002) Colloids Surf A Physicochem Eng Asp 197:101–109

    Article  CAS  Google Scholar 

  21. Andrey JZ, Neville ZM, Anne TH, Jackie YY (2000) Langmuir 16:9168–9176

    Article  Google Scholar 

  22. Nave S, Eastoe J (2000) Langmuir 16:8733–8740

    Article  CAS  Google Scholar 

  23. Pileni MP (1993) J Phys Chem 97:6961–6973

    Article  CAS  Google Scholar 

  24. Selvan ST, Mani A, Athinarayanasamy K, Phani KLN, Pitchumani S (1995) Mater Res Bull 30:699–705

    Article  CAS  Google Scholar 

  25. Moulik SP, Dey GC, Bhowmik BB, Panda AK (1999) J Phys Chem B 103:7122–7129

    Article  CAS  Google Scholar 

  26. Munshi N, De TK, Maitra A (1997) J Colloid Interface Sci 190:387–391

    Article  Google Scholar 

  27. Schurtenberger P, Magid LJ, King SM, Lindner P (1991) J Phys Chem 95:4173–4176

    Article  CAS  Google Scholar 

  28. Rao PS, Sathyanarayana DN, Palaniappan S (2002) Macromolecules 35:4988–4996

    Article  CAS  Google Scholar 

  29. Tzou K, Gregory RV (1993) Synth Met 53:365–377

    Article  CAS  Google Scholar 

  30. Liu H, Hu XB, Wang JY, Boughton RI (2002) Macromolecules 35:9414–9419

    Article  CAS  Google Scholar 

  31. Yan F, Zheng C, Zhai X, Zhao D (1998) J Appl Polym Sci 67:747–754

    Article  CAS  Google Scholar 

  32. Chen SA, Lee HT (1993) Macromolecules 26:3254–3261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Wang, J., Ma, Y. et al. The relationship of conductivity to the morphology and crystallinity of polyaniline controlled by water content via reverse microemulsion. Colloid Polym Sci 285, 405–411 (2007). https://doi.org/10.1007/s00396-006-1572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1572-x

Keywords

Navigation