Skip to main content
Log in

Crystallization and melting behavior of low molar weight PEO–PPO–PEO triblock copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The crystallization behavior of a series of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymers (Pluronics) was investigated using time-resolved small-angle X-ray scattering (SAXS), thermal analysis, and polarized optical microscopy. For comparison, a PEO homopolymer, PEO3K, was also included. Time-resolved SAXS during the crystallization of PEO3K shows a typical “two-step” process, i.e., in the initial stage, a metastable crystal with nonintegral folding (NIF) structure forms first, then, it transforms into integral folding (IF) structures, the IF(0) and the IF(1). In contrast with PEO3K, the PEO–PPO–PEO triblock copolymers show a “one-step” crystallization process, i.e., the PEO blocks crystallize directly into the final state and do not change with time. In thermal analysis, only one major solid–melt transition is observed during isothermal crystallization and subsequent melting for triblock copolymers. In the full temperature range, a linear crystal growth is observed. The crystal growth rates monotonously decrease with crystallization temperatures. Notches or breaks due to the NIF–IF transition as clearly seen for PEO3K cannot be recognized for Pluronics. Based on these results, we conclude that the crystallization of PEO–PPO–PEO triblock copolymers follows a “one-step” process; no metastable structure serving as an intermediate state is formed during the crystallization process within the time scale of the current experiments (<120 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beech DR, Booth C, Dodgson DV, Sharpe RR, Waring JRS (1972) Polymer 13:73

    Article  CAS  Google Scholar 

  2. Beech DR, Booth C, Hillier IH, Pickles CJ (1972) Eur Polym J 8:799

    Article  CAS  Google Scholar 

  3. Kovacs AJ, Gonthier A (1972) Kolloid ZZ Polym 250:530

    Article  CAS  Google Scholar 

  4. Kovacs AJ, Gonthier A, Straupe C (1975) J Polym Sci Polym Symp 50:283

    Article  CAS  Google Scholar 

  5. Kovacs AJ, Gonthier A, Straupe C (1977) J Polym Sci Polym Symp 59:31

    Article  CAS  Google Scholar 

  6. Cheng SZD, Zhang AQ, Chen JH (1990) J Polym Sci Polym Lett 28:233

    CAS  Google Scholar 

  7. Cheng SZD, Zhang AQ, Chen JH, Heberer DP (1991) J Polym Sci Part B Polym Phys 29:287–299

    Article  CAS  Google Scholar 

  8. Cheng SZD, Zhang AQ, Chen JH (1991) J Polym Sci Part B Polym Phys 29:311

    Article  CAS  Google Scholar 

  9. Cheng SZD, Zhang AQ, Barley JS, Chen JH, Habenschuss A, Zschack PR (1991) Macromolecules 24:3937

    Article  CAS  Google Scholar 

  10. Cheng SZD, Chen JH, Barley JS, Zhang AQ, Habenschuss A, Zschack PR (1992) Macromolecules 25:1453; Polymer 33:1140

    Article  CAS  Google Scholar 

  11. Cheng SZD, Wu SS, Chen JH, Zhou Q, Quirk RP, von Meerwall ED, Hsiao BS, Habenschuss A, Zschack PR (1993) Macromolecules 26:5105

    Article  CAS  Google Scholar 

  12. Lee SW, Chen EQ, Zhang AQ, Yoon YC, Moon BS, Lee SK, Harris FW, Cheng SZD, von Meerwall ED, Hsiao BS, Verma R, Lando JB (1996) Macromolecules 29:8816

    Article  CAS  Google Scholar 

  13. Chen EQ, Lee SW, Zhang AQ, Moon BS, Lee SK, Harris FW, Cheng SZD, Hsiao BS, Yeh F (1999) Polymer 40:4543

    Article  CAS  Google Scholar 

  14. Chen EQ, Lee SW, Zhang AQ, Moon BS, Mann I, Harris FW, Cheng SZD, Hsiao BS, Yeh F, von Meerwall ED, Grubb DT (1999) Macromolecules 32:4784

    Article  CAS  Google Scholar 

  15. Keller A, Cheng SZD (1998) Polymer 39:4461

    Article  Google Scholar 

  16. Whitmore MD, Noolandi J (1988) Macromolecules 21:1482

    Article  CAS  Google Scholar 

  17. Reiter G, Castelein G, Hoerner P, Riess G, Blumen A, Sommer JU (1999) Phys Rev Lett 83:3844

    Article  CAS  Google Scholar 

  18. Reiter G, Castelein G, Sommer JU, Rottele A, Thurn-Albrecht T (2001) Phys Rev Lett 87:226101

    Article  CAS  Google Scholar 

  19. Zhu L, Chen Y, Zhang A, Calhoun BH, Chun M, Quirk RP, Cheng SZD, Hsiao BS, Yeh F, Hashimoto T (1999) Phys Rev B 60:10022

    Article  CAS  Google Scholar 

  20. Zhu L, Cheng SZD, Calhoun BH, Ge Q, Quirk RP, Thomas EL, Hsiao BS, Yeh F, Lotz B (2000) J Am Chem Soc 122:5957

    Article  CAS  Google Scholar 

  21. Hong S, MacKnight WL, Russell TP, Gido SP (2001) Macromolecules 34:2876

    Article  CAS  Google Scholar 

  22. Hong S, Yang L, MacKnight WL, Gido SP (2001) Macromolecules 34:7009

    Article  CAS  Google Scholar 

  23. Chen HL, Hsiao SC, Lin TL, Yamauchi K, Hasegawa H, Hashimoto T (2001) Macromolecules 34:671

    Article  CAS  Google Scholar 

  24. Chen HL, Wu JC, Lin TL, Lin JS (2001) Macromolecules 34:6936

    Article  CAS  Google Scholar 

  25. Huang YH, Yang CH, Chen HL, Chiu FC, Lin TL, Liou W (2004) Macromolecules 37:486

    Article  CAS  Google Scholar 

  26. Hamley IW, Castelletto V, Yang Z, Price C, Booth C (2001) Macromolecules 34:4079

    Article  CAS  Google Scholar 

  27. Fairclough JPA, Yu GE, Mai SM, Crothers M, Mortensen K, Ryan AJ, Booth C (2000) Phys Chem Chem Phys 2:1503

    Article  CAS  Google Scholar 

  28. Zhang FJ, Stühn B (2006) Colloid Polym Sci 284:823–833

    Article  CAS  Google Scholar 

  29. Svensson B, Olsson U (2000) Macromolecules 33:7413

    Article  CAS  Google Scholar 

  30. Mortensen K, Brown W, Jørgensen E (1994) Macromolecules 27:5654

    Article  CAS  Google Scholar 

  31. Mortensen K, Brown W, Jørgensen E (1995) Macromolecules 28:1458

    Article  CAS  Google Scholar 

  32. Booth C, Pickles CJ (1973) J Polym Sci Polym Phys Ed 11:249

    CAS  Google Scholar 

  33. Booth C, Dodgson DV (1973) J Polym Sci Polym Phys Ed 11:265

    CAS  Google Scholar 

  34. Ashman PC, Booth C (1975) Polymer 16:889

    Article  CAS  Google Scholar 

  35. Ashman PC, Booth C, Cooper DR, Price C (1975) Polymer 16:897

    Article  CAS  Google Scholar 

  36. Viras F, Luo YZ, Viras K, Mobbs RH, King TA, Booth C (1988) Makromol Chem 189:459

    Article  CAS  Google Scholar 

  37. Wunderlich B (1980) Macromolecular Physics, vol 3. Crystal melting. Academic, New York

  38. Zhang FJ, Gong YM, He TB (2003) Eur Polym J 39:2315

    Article  CAS  Google Scholar 

  39. Zhang FJ, Liu JP, Xie FC, Fu Q, He TB (2002) J Polym Sci Part B Polym Phys 40:822

    Article  CAS  Google Scholar 

  40. Minakov AA, Mordvintsev DA, Schick C (2004) Polymer 45:3755

    Article  CAS  Google Scholar 

Download references

Acknowledgments

F. Zhang thanks the Alexander von Humboldt Foundation for awarding the Humboldt Research Fellowship. The authors thank Dr. Jianjun Xu and Dr. Ingo Alig (Deutsche Kunststoff-Institut, Darmstadt, Germany) for their kind help on DSC experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Stühn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Stühn, B. Crystallization and melting behavior of low molar weight PEO–PPO–PEO triblock copolymers. Colloid Polym Sci 285, 371–379 (2007). https://doi.org/10.1007/s00396-006-1571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1571-y

Keywords

Navigation