Skip to main content
Log in

Sol–gel transitions of sodium montmorillonite dispersions by cationic end-capped poly(ethylene oxides) (surface modification of bentonites, IV)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(ethylene oxides), PEO, end-capped with hexadecyl dimethylammonium, HDDMA+, and trimethylammonium hexyldimethylammonium, THA2+, changed distinctly the sol–gel transition of sodium montmorillonite dispersions. In the presence of HDDMA+-PEO 1,500 and 4,000, domains of sol with increased salt tolerance (c k=550–1,000 mmol NaCl/l) were found at high polymer and low montmorillonite contents. The corresponding PEO of higher molar mass (20,000 and 35,000) led to extended fields of flocs. THA2+-PEO 1,500 formed attractive gels at polymer concentrations >2–5 g/l and montmorillonite contents >0.5%. These gels showed very high yield values. THA2+-PEO of higher molar mass acted as stabilizing agents. The salt tolerance was highest (300–750 mmol/l) in the presence of THA2+-PEO 20,000. The observed sol–gel diagrams reveal the interplay between polymer end-group fixation on the clay mineral particles, polymer conformation, and colloidal stabilization and destabilization mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In the case of electrostatic stabilization the influence of salt addition is expressed by the critical coagulation concentration whereas in the case of steric stabilization the term salt resistance or tolerance is more appropriate.

  2. In contrast to the longer chain PEO, the higher number of end groups in the interlayer space increases the plateau value of HDDMA+-PEO 1,500 to 1.82 nm. Contraction to 1.64 nm by THA2+-PEO 1,500 is a consequence of the stronger electrostatic interaction between the divalent end groups and the layer charges.

References

  1. Grim RE (1962) Applied clay mineralogy. McGraw-Hill, New York

    Google Scholar 

  2. van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  3. Lagaly G, Fahn R (1983) In: Ullmanns Enzyclopädie der Technischen Chemie, vol 23, 4th edn. Verlag Chemie, Weinheim, pp 311–326

    Google Scholar 

  4. Jasmund K, Lagaly G (eds) (1993) Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt

    Google Scholar 

  5. Murray HH (1986) Clays. In: Ullmann’s encyclopedia of industrial chemistry, vol A7. VCH, Weinheim, pp 109–136

    Google Scholar 

  6. Murray HH (1999) Clay Miner 34:39

    Article  CAS  Google Scholar 

  7. Murray HH (2000) Appl Clay Sci 17:207

    Article  CAS  Google Scholar 

  8. Murray HH (2003) In: Dominguez EA, Mas GR, Cravero F (eds) A clay odyssey. Proceedings of the 12th international clay conference 2001, Bahia Blanca. Elsevier, Amsterdam, pp 3–14

    Google Scholar 

  9. Harvey C, Lagaly G (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, chapter 10.1. Elsevier, Amsterdam, pp 507–548

    Google Scholar 

  10. Lagaly G, Schulz O, Zimehl R (1997) Dispersionen und Emulsionen. Eine Einführung in die Kolloidik feinverteilter Stoffe einschlieβlich der Tonminerale. Mit einem historischen Beitrag über Kolloidwissenschaftler von Klaus Beneke. Steinkopff Verlag, Darmstadt, Germany

    Google Scholar 

  11. Lagaly G (2005) In: Stechemesser H, Dobias B (eds) Coagulation and flocculation, 2nd edn. Surfactant science series, vol 126, CRC Press, Taylor and Francis Group, LLC, Boca Raton, FL, USA, pp 519–600

  12. Lagaly G (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, chap 5. Elsevier, Amsterdam, pp 143–248

    Google Scholar 

  13. Callaghan IC, Ottewill RH (1974) Faraday Discuss 57:110

    Article  CAS  Google Scholar 

  14. Rand B, Peken E, Goodwin JW, Smith RW (1980) J Chem Soc Faraday I 76:225

    Article  CAS  Google Scholar 

  15. Güven N (1992) In: Güven N, Pollastro RM (eds) Clay–water interface and its rheological implications. CMS workshop lectures, vol 4. The Clay Minerals Society, Boulder, CO, USA, pp 82–125

    Google Scholar 

  16. Permien T, Lagaly G (1994a) Clay Miner 29:751

    CAS  Google Scholar 

  17. Abend S, Lagaly G (2000) Appl Clay Sci 16:201

    Article  CAS  Google Scholar 

  18. Tombácz E, Balász J, Lakatos J, Szántó F (1989) Colloid Polym Sci 267:1016

    Article  Google Scholar 

  19. Brandenburg U, Lagaly G (1988) Appl Clay Sci 3:263

    Article  CAS  Google Scholar 

  20. Lagaly G (1989) Appl Clay Sci 4:105

    Article  CAS  Google Scholar 

  21. Permien T, Lagaly G (1994b) Clay Miner 29:761

    CAS  Google Scholar 

  22. Permien T, Lagaly G (1995) Clays Clay Miner 43:229

    Article  CAS  Google Scholar 

  23. Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic, London

    Google Scholar 

  24. Lagaly G, Ziesmer S (2005) Clay Miner 40:523

    Article  CAS  Google Scholar 

  25. Tributh H, Lagaly G (1986a) GIT-Fachz Lab 30:524

    CAS  Google Scholar 

  26. Tributh H, Lagaly G (1986b) GIT-Fachz Lab 30:771

    Google Scholar 

  27. Carrado KA, Bergaya F, Decarreau A, Lagaly G, Petit S (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, chap 4. Elsevier, Amsterdam, pp 117–141

    Google Scholar 

  28. Lagaly G (1994) In: Mermut A (ed) Charge characteristics of 2:1 clay minerals. CMS workshop lectures, vol 6, The Clay Minerals Society, Boulder, CO, USA, pp 1–46

    Google Scholar 

  29. Ammann L, Bergaya F, Lagaly G (2006) Clay Min 40:441–453

    Article  CAS  Google Scholar 

  30. Bückmann AF, Morr M, Johansson G (1981) Makromol Chem 182:1379

    Article  Google Scholar 

  31. Dau J, Lagaly G (1998) Croat Chem Acta 71:983

    CAS  Google Scholar 

  32. Parreira HC, Lukenbach ER, Lindemann MKO (1979) J Am Oil Chem Soc 56:1015

    Article  CAS  Google Scholar 

  33. Berardelli ML, Biondi C, De Rossi M, Fonseca G, Giomini M (1972) J Electrochem Soc 119:114

    Article  CAS  Google Scholar 

  34. Penner D, Lagaly G (2001) Appl Clay Sci 19:131

    Article  CAS  Google Scholar 

  35. Permien T, Lagaly G (1994c) Colloid Polym Sci 272:1306

    Article  CAS  Google Scholar 

  36. Lagaly G, Ziesmer S (2003) Adv Colloid Interf Sci 100–102:105

    Article  CAS  Google Scholar 

  37. Penner D, Lagaly G (2000) Clays Clay Miner 48:24635

    Article  Google Scholar 

  38. Parfitt RL, Greenland DJ (1970a) Clay Miner 8:305

    Article  CAS  Google Scholar 

  39. Parfitt RL, Greenland DJ (1970b) Clay Miner 8:317

    Article  CAS  Google Scholar 

  40. Zhao X, Urano K, Ogasawara S (1989) Colloid Polym Sci 267:899

    Article  CAS  Google Scholar 

  41. Ruiz-Hitzky E, Aranda P (1990) Adv Mater 2:545

    Article  CAS  Google Scholar 

  42. Aranda P, Ruiz-Hitzky E (1992) Chem Mater 4:1395

    Article  CAS  Google Scholar 

  43. Aranda P, Ruiz-Hitzky E (1999) Appl Clay Sci 15:119

    Article  CAS  Google Scholar 

  44. Aranda P, Galvan JC, Casal B, Ruiz-Hitzky E (1992) Electrochim Acta 37:1573

    Article  CAS  Google Scholar 

  45. Ruiz-Hitzky E (1993) Adv Mater 5:334

    Article  CAS  Google Scholar 

  46. Ruiz-Hitzky E, Aranda P, Casal B, Galvan JC (1995) Adv Mater 7:180

    Article  CAS  Google Scholar 

  47. Billingham J, Breen C, Yarwood J (1997) Vibr Spectrosc 14:19

    Article  CAS  Google Scholar 

  48. Breen C, Rawson JO, Mann BE, Aston M (1998) Colloids Surf A 132:17

    Article  CAS  Google Scholar 

  49. Breen C, Thompson G, Webb M (1999) J Mater Chem 9:3159

    Article  CAS  Google Scholar 

  50. Bujdák J, Hackett E, Giannelis EP (2000) Chem Mater 12:2168

    Article  CAS  Google Scholar 

  51. Smalley MV, Hatharasinghe HLM, Osborne I, Swenson J, King SM (2001) Langmuir 17:3800

    Article  CAS  Google Scholar 

  52. Strawhecker KK, Manias E (2003) Chem Mater 15:844

    Article  CAS  Google Scholar 

  53. Deng Y, Dixon JB,White GN (2003) Clays Clay Miner 51:150

    Article  CAS  Google Scholar 

  54. Sonon LS, Thompson ML (2005) Clays Clay Miner 53:45

    Article  CAS  Google Scholar 

  55. Deng Y, Dixon JB, Whitw GN (2006) Colloid Polym Sci 284:347

    Article  CAS  Google Scholar 

  56. Lagaly G, Weiss A (1971) Kolloid-Z Z Polym 243:48

    Article  CAS  Google Scholar 

  57. Ziesmer S (2002) Thesis, University Kiel

  58. Volpert E, Selb J, Candau F, Green N, Argillier JF, Audibert A (1998) Langmuir 14:1870

    Article  CAS  Google Scholar 

  59. Janek M, Lagaly G (2003) Colloid Polym Sci 281:293

    Article  CAS  Google Scholar 

  60. Kim HS, Lamarche C, Verdier A (1983) Colloid Polym Sci 261:64

    Article  CAS  Google Scholar 

  61. Lagaly G (1986) In: Ullmann’s encyclopedia of industrial chemistry. VCH Verlagsgesellschaft, Weinheim, A7, pp 341–367

    Google Scholar 

  62. Lagaly G (2000) In: Ullmann’s encyclopedia of industrial chemistry, chap 4, 6th edn. Electronic Release 2000, Wiley, VCH

  63. Smith JN, Meadows J, Williams PA (1996) Langmuir 12:3773

    Article  CAS  Google Scholar 

  64. Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lagaly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagaly, G., Ziesmer, S. Sol–gel transitions of sodium montmorillonite dispersions by cationic end-capped poly(ethylene oxides) (surface modification of bentonites, IV). Colloid Polym Sci 284, 947–956 (2006). https://doi.org/10.1007/s00396-006-1477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1477-8

Keywords

Navigation