Skip to main content
Log in

Photoinduced charge transfer mechanism in PPV [poly(p-phenylinevinylene)] polymer: role of iodide species

  • Original Contribution
  • Polymer
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The photophysical and photochemical behavior of poly(p-phenylinevinylene (PPV) polymers in different solvents (toluene and Triton X-100) and in thin form [PPV/optical transparent electrode (OTE)] has been investigated by emission and transient absorption spectroscopies. The absorption and emission studies strongly indicate the presence of dynamic quenching for PPV polymers in different solvents (toluene and Triton X-100) in the presence of LiI/I2. The fluorescence quenching of the PPV polymer by iodide obeys the linear Stern–Volmer equation for PPV/toluene/LiI system. The positive deviation from Stern–Volmer observed in PPV/Triton X-100/I2 system may be accounted for by the “quenching sphere of action model”. Emission studies indicated an increased conjugation length for PPV polymers on going from solution to the solid state. The emission of PPV was readily quenched by hole scavengers such as I (LiI, I2). The photoinduced charge transfer to these hole scavengers was studied by laser flash photolysis. The transient absorption measurements confirm the formation of I and subsequent formation of \(I^{{* - }}_{2} \) which has been reported for the first time for PPV/I2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Nature 347:539

    Article  CAS  Google Scholar 

  2. Braun D, Heeger A (1991) J Appl Phys Lett 58:1982

    Article  CAS  Google Scholar 

  3. Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colinari N, Heeger AJ (1992) Nature 357:477

    Article  CAS  Google Scholar 

  4. Bharathan J, Yang Y (1998) Appl Phys Lett 72:2660

    Article  CAS  Google Scholar 

  5. Hebner TR, Wu CC, Marey D, Lu MH, Strum JC (1998) Appl Phys Lett 72:519

    Article  CAS  Google Scholar 

  6. Yu G, Wang J, McElvain J, Heeger AJ (1998) Adv Mater 10:1431

    Article  CAS  Google Scholar 

  7. Brown AR, Greenham NC, Burroughes JH, Bradley DDC, Friend RH, Burn PL, Kraft A, Holmes AB (1992) Chem Phys Lett 200:46

    Article  CAS  Google Scholar 

  8. Brown AR, Burn PL, Bradley DDC, Friend RH, Kraft A, Holmes AB (1992) Mol Cryst Liq Cryst 216:111

    Article  CAS  Google Scholar 

  9. Burn PL, Holmes AB, Kraft A, Bradley DDC, Brown AR, Friend RH, Gymer RW (1992) Nature 356:47

    Article  CAS  Google Scholar 

  10. Burn PL, Holmes AB, Kraft A, Bradley DDC, Brown AR, Friend RH (1992) J Chem Soc Chem Commun 1:32

    Article  Google Scholar 

  11. Yu Y, Lee H, Vanlaeken A, Hsieh BR (1998) Macromolecules 31:5553

    Article  CAS  Google Scholar 

  12. Nguyen TQ, Martini I, Liu J, Schwartz BJ (2000) J Phys Chem B 104:237

    Article  CAS  Google Scholar 

  13. Wang P, Collison CJ, Rothberg LJ (2001) J Photochem Photobiol A 144:63

    Article  CAS  Google Scholar 

  14. Lim SH, Bjorklund TG, Bardeen C (2001) J Chem Phys Lett 342:555

    Article  CAS  Google Scholar 

  15. Nakazawa Y, Hoshino K, Hanna JL, Kokado H (1989) J Appl Phys 28:12517

    Google Scholar 

  16. Alimi K, Safoula G, Bernede JC, Rabiller C (1996) J Polym Sci Part B 34:845

    Article  CAS  Google Scholar 

  17. Huang F, MacDiarmid AG, Hsieh BR (1997) Appl Phys Lett 71:2415

    Article  CAS  Google Scholar 

  18. Thomas MD, Hug GL (1998) Comput Chem (Oxford) 22:491

    CAS  Google Scholar 

  19. Burn PL, Bradley DDC, Friend RH, Halliday DA, Holmes AB, Jackson RW, Kraft A (1992) J Chem Soc Perkin Trans 1:3225

    Article  Google Scholar 

  20. Pichler K, Halliday DA, Bradley DDC, Burn PL, Friend RH, Holmes AB (1993) J Phys Condens Matter 5:7155

    Article  CAS  Google Scholar 

  21. Padmanaban G, Ramakrishnan S (2000) J Am Chem Soc 122:2244

    Article  CAS  Google Scholar 

  22. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer-Plenum, New York

    Google Scholar 

  23. Pesce AJ, Rosen CG, Pasby TL (eds) (1971) Fluorescence spectroscopy. Marcel Dekker, New York

    Google Scholar 

  24. RM Clegg (1996) Fluorescence imaging spectroscopy and microscopy. In: Wang XF, Herman B (eds) Wiley, New York

    Google Scholar 

  25. Li Sha-Yu, Xiong Fei, Zhang Hai-Rong, Lu Xue-Fang, Li Yi, Yang Guo-Qiang (2004) Chin J Chem 22:80

    CAS  Google Scholar 

  26. Min Zheng, Fenglian Bai, Li Fengying, Yuliang Li, Daoben Zhu (1998) J Appl Polym Sci 70:599

    Article  Google Scholar 

  27. Keizer J (1983) J Am Chem Soc 105:1494

    Article  CAS  Google Scholar 

  28. Wang Deli, Wang Jian, Moses Daniel, Bazan Guillermo C, Heeger Alan J (2001) Langmuir 17:1262

    Article  CAS  Google Scholar 

  29. Zheng M, Bai F, Zhu DJ (1998) Photochem Photobiol A 116:143

    Article  CAS  Google Scholar 

  30. Diaz-Garcia MA, Hide F, Schwartz BJ, Andersson MR, Pei Q, Heeger AJ (1997) Synth Met 84:455

    Article  CAS  Google Scholar 

  31. Gettinger CL, Heeger AJ, Drake JM, Pine DJ (1994) J Chem Phys 101:1673

    Article  CAS  Google Scholar 

  32. Martens JHF (1993) Synth Met 55–57:434

    Article  Google Scholar 

  33. Harrison NT, Baigent DR, Samuel IDW, Friend RH, Grimsdale AC, Moratti SC, Holmes AB (1996) Phys Rev B 53:15815

    Article  CAS  Google Scholar 

  34. Hu B, Karaz FE (1998) Chem Phys 227:263

    Article  CAS  Google Scholar 

  35. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford Science, Oxford

    Google Scholar 

  36. Hamer PJ, Pichler K, Harrison MG, Friend RH, Ratier B, Moliton A, Moratti SC, Holmes AB (1996) Phila Mag B 73:367

    Article  CAS  Google Scholar 

  37. Zaidi B, Ayachi S, Mabrouk A, Molinie P, Alimi K (2003) Polym Degrad Stab 79:183

    Article  CAS  Google Scholar 

  38. Ma L, Wang X, Wang B, Chen J, Wang J, Huang K, Zhang B, Cao Y, Han Z, Qian S, Yao S (2002) Chem Phys 285:85

    Article  CAS  Google Scholar 

  39. Bedja I, Kamat PV (1995) J Phys Chem 99:9182

    Article  CAS  Google Scholar 

  40. Kamat PV (1985) Langmuir 1:608

    Article  CAS  Google Scholar 

  41. Kamat PV, Patrick B (1991) In: Levy B, Deaton J, Leubner I, Slifkin L, Nuenter A, Kamat PV, Tani T (eds) Proceedings of the 44th IS&T meeting. The Society for Imaging Science and Technology, Springfield, VA, pp 293

  42. Brabec CJ, Cravino A, Zerza G, Sariciftci NS, Kiebooms R, Vanderzande D, Hummelen JC (2001) J Phys Chem B 105:1528

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described herein was supported by the Office of the Basic Energy Sciences of the US Department of Energy. I would like to thank Prof. Prashant Kamat for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh N. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.N. Photoinduced charge transfer mechanism in PPV [poly(p-phenylinevinylene)] polymer: role of iodide species. Colloid Polym Sci 284, 853–861 (2006). https://doi.org/10.1007/s00396-005-1444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1444-9

Keywords

Navigation