Skip to main content
Log in

Direct imaging and elemental mapping of microgels in natural rubber particles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Elemental distribution maps of Hevea brasiliensis natural rubber gels have been obtained using electron energy-loss spectroscopy imaging in a low-energy (80 kV) electron spectroscopy imaging transmission electron microscope. Two types of gels have been investigated: a microgel contained within the natural rubber particle, and a macrogel prepared by equilibrating dry natural rubber in toluene. Both types of gels are found to contain a high amount of calcium. The intraparticle microgel is dense and rich in calcium but poor in nitrogen, indicating the predominant role of calcium in cross-link formation. The macroscopic gel is inhomogeneous, with dense calcium-rich microgels interspersed in a matrix of a less dense gel. The significant level of nitrogen associated with the matrix of the less dense gel supports the role of proteinaceous materials in the formation of the macroscopic gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allen PW, Bristow GM (1963) J Appl Polym Sci 7:603

    Article  CAS  Google Scholar 

  2. Sekhar BC (1962) In: Proceedings of the 4th rubber technology conference, London, p 460

  3. Shiibashi T (1987) Int Polym Sci Technol 14:T33

    Google Scholar 

  4. Tanaka Y, Kawahara S, Tangpakdee J (1997) Kautsch Gummi Kunstst 50:6

    CAS  Google Scholar 

  5. Lu FJ, Hsu SL (1987) Rubber Chem Technol 60:647

    CAS  Google Scholar 

  6. Rippel MM, Leite CAP, Galembeck F (2002) Anal Chem 74:2541

    Article  CAS  PubMed  Google Scholar 

  7. Rippel MM, Lee L-T, Leite CAP, Galembeck F (2003) J Colloid Interface Sci 268:330

    Article  CAS  PubMed  Google Scholar 

  8. Brydson JA (1988) Rubbery materials and their compounds. Elsevier, London

  9. Cornish K, Wood DF, Windle JJ (1999) Planta 210:85

    Article  CAS  PubMed  Google Scholar 

  10. Van den Temple M (1942) Trans Inst Rubber Ind 18:173

    Google Scholar 

  11. Van der Bie GJ (1955) J Polym Sci 16:63

    Article  Google Scholar 

  12. Sekhar BC (1960) J Polym Sci 48:133

    Article  Google Scholar 

  13. Gregg EC, Macy JH (1973) Rubber Chem Technol 46:47

    CAS  Google Scholar 

  14. Burfield DR (1974) 249:29

  15. Kawara S, Kakubo T, Sakdapipanich JT, Isono Y, Tanaka Y (2000) Polymer 41:7483

    Article  Google Scholar 

  16. Burfield DR, Gan SN (1975) J Polym Sci Polym Chem Ed 13:2725

    Article  CAS  Google Scholar 

  17. Tanaka Y (2001) Rubber Chem Technol 74:355

    CAS  Google Scholar 

  18. Burfield DR, Gan SN (1977) J Polym Sci Polym Chem Ed 15:2721

    Article  CAS  Google Scholar 

  19. Blackley DC (1997) Polymer latices, vol 2. Chapman, London

  20. Freeman R (1954) In: Proceedings of the 3rd rubber technology conference, London, p 3

Download references

Acknowledgements

The authors acknowledge support from FAPESP, CNPq and Pronex/Finep/MCT. This is a contribution from the Instituto do Milêno de Materiais Complexos (PADCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lay-Theng Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

M. Rippel, M., A. P. Leite, C., Lee, LT. et al. Direct imaging and elemental mapping of microgels in natural rubber particles. Colloid Polym Sci 283, 570–574 (2005). https://doi.org/10.1007/s00396-004-1187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1187-z

Keywords

Navigation