Skip to main content
Log in

Nanostructure of xanthan networks

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Investigations of structure formation in linear and cross-linked polymer systems including one based on xanthan, an exopolysaccharide, attract theoretical and practical interest because of their widespread applications. Freeze-fracture transmission electron microscopy is used to study the structural topology formed in aqueous xanthan solutions and xanthan hydrogels. The data enable us to visualize for the first time an intact structure of xanthan formed in dilute and semidilute solutions at concentrations ranging from 0.002 to 0.5 wt %. In addition to single macromolecules, the dilute xanthan solutions are shown to contain microgels. When the concentration grows to values close to an overlap concentration (C*), a weak gel structure appears, being composed by a continuous 3D network with relatively large meshes. Macromolecular aggregation is observed in the network skeleton when switching to semidilute entangled solutions (>C**); it is accompanied by a compaction of network structure. The cross-linking of polymer chains by polyvalent Cr3+ ions gives a network skeleton composed of aggregated macromolecules at lower concentrations (around C*). Macromolecular aggregation in the skeleton of a network polymer structure occurring both in the absence and in presence of Cr3+ cations is indicative of a microphase separation into polymer-poor and polymer-rich regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. T. Mishchenko, Downhole Oil Production (Ros. Gos. Univ. Nefti Gaza im. I. M. Gubkina, Moscow, 2003) [in Russian].

  2. M. B. Smith and C. T. Montgomery, Hydraulic Fracturing (CRC, London, New York, 2015).

    Google Scholar 

  3. J. K. Fink, Hydraulic Fracturing Chemicals and Fluids Technology (Gulf Professional, Elsevier, USA, 2013).

    Google Scholar 

  4. J. K. Fink, Oil Field Chemicals (Elsevier Science, USA, 2003).

    Google Scholar 

  5. L. Kh. Ibragimov, I. T. Mishchenko, and D. K. Cheloyants, Intensification of Oil Production (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  6. T. Sato, T. Norisuye, and H. Fujita, “Double-stranded helix of xanthan: dimensional and hydrodynamic properties in 0.1 aqueous sodium chloride,” Macromolecules 17, 2696–2700 (1984).

    Article  Google Scholar 

  7. T. Sato, S. Kojita, T. Noritsuye, and H. Fugita, “Double- stranded helix of xanthan in dilute solution: further evidence,” Polym. J. 16, 423–429 (1984).

    Article  Google Scholar 

  8. T. Lund, O. Smidsrod, B. T. Stokke, and A. Elgsaeter, “Controlled gelation of xanthan by trivalent chromic ions,” Carbohydr. Polym. 8, 245–256 (1988).

    Article  Google Scholar 

  9. P. W. Chang, L. A. Burkholder, J. C. Philips, M. Ghaemmaghami, M. A. Myer, and R. E. Babcock, “Selective emplacement of xanthan/Cr(111) gels in porous media,” SPE Paper No. 17589, pp. 411–421.

  10. J. S. Tsau, J. T. Liang, A. D. Hill, and K. Sepehrnoorl, “Re-formation of xanthan/chromium gels after shear degradation,” SPE Reservoir Eng., pp. 21–28 (1992).

    Google Scholar 

  11. R. W. Eggert, G. P. Willhite, and D. W. Green, “Experimental measurement of the persistence of permeability reduction in porous media treated with xanthan/Cr(lll) gel systems,” SPE Reservoir Eng., pp. 29–35 (1992).

    Google Scholar 

  12. M. Bergmeier, M. Gradzielski, H. Hoffmann, and K. Mortensen, “Behavior of a charged vesicle system under the influence of a shear gradient: a microstructural study,” J. Phys. Chem. B 102, 2837–2840 (1998).

    Article  Google Scholar 

  13. D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R.-F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L.-C. Chien, et al., “Polarization-modulated smectic liquid crystal phases,” Science 301 (1204), 1203–1211 (2003).

    Google Scholar 

  14. J. Hao, J. Huang, G. Xu, L. Zheng, W. Liu, and H. Hoffmann, “Freeze-fracture transmission electron microscopy studies on the self-assemblies of amphiphilic solutions,” Sci. China, Ser. B 46, 567–576 (2003).

    Article  Google Scholar 

  15. J. Hao and H. Hoffmann, “Self-assembled structures in excess and salt-free catanionic surfactant solutions,” Curr. Opinion Colloid Interface Sci. 9, 279–293 (2004).

    Article  Google Scholar 

  16. W. Jahn and R. Strey, “Microstructure of microemuisions by freeze fracture electron microscopy,” J. Phys. Chem. 92, 2294–2301 (1988).

    Article  Google Scholar 

  17. H. Yang, J. Wang, S. Yang, and W. Zhang, “Aggregate conformation and rheological properties of didodecyldimethylammonium bromide in aqueous solution,” J. Dispers. Sci. Technol., No. 31, 650–653 (2010).

    Article  Google Scholar 

  18. T. A. Camesano and K. J. Wilkinson, “Single molecule study of xanthan conformation using atomic force microscopy,” Biomacromolecules, No. 2, 1184–1191 (2001).

    Article  Google Scholar 

  19. I. Capron, S. Alexandre, and G. Muller, “An atomic force microscopy study of the molecular organisation of xanthan,” Polymer 39, 5725–5730 (1998).

    Article  Google Scholar 

  20. M. Iijimaa, M. Shinozakib, T. Hatakeyamac, M. Takahashid, and H. Hatakeyamae, “AFM studies on gelation mechanism of xanthan gum hydrogels,” Carbohydr. Polym. 68, 701–707 (2007).

    Article  Google Scholar 

  21. H. Li, M. Rief, and F. Oesterhelt, and E. H. Gaub, “Single-molecule force spectroscopy on xanthan by AFM,” Adv. Mater. 3, 316–319 (1998).

    Article  Google Scholar 

  22. M. J. Miles, I. Lee, and E. D. T. Atkins, “Molecular resolution of polysaccharides by scanning tunneling microscopy,” J. Vacuum Sci. Technol. B 9, 1206–1209 (1991).

    Article  Google Scholar 

  23. A. P. Gunning, T. J. McMaster, and V. J. Morris, “Scanning tunnelling microscopy of xanthan gum,” Carbohydr. Polym. 21, 47–51 (1993).

    Article  Google Scholar 

  24. M. J. Wilkins, M. C. Davies, D. E. Jackson, J. R. Mitchell, C. J. Roberts, B. T. Stokke, and S. J. B. Tendler, “Comparison of scanning tunnelling microscopy and transmission electron microscopy image data of a microbial polysaccharide,” Ultramicroscopy 48, 197–201 (1993).

    Article  Google Scholar 

  25. M. J. Wilkins, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “An investigation of substrate and sample preparation effects on scanning tunnelling microscopy studies on xanthan gum,” J. Microsc. 172, 215–221 (1993).

    Article  Google Scholar 

  26. V. B. Bueno, R. Bentini, L. H. Catalini, and D. F. S. Petri, “Synthesis and swelling behavior of xanthan-based hydrogels,” Carbohydr. Polym. 92, 1091–1099 (2013).

    Article  Google Scholar 

  27. D. Yu. Mityuk, D. A. Muravlev, A. V. Shibaev, and O. E. Philippova, “Study of polyvalent metal ions binding by polymer ligands,” Tr. Ross. Univ. Nefti Gaza Gubkina, No. 3 (208), 108–117 (2015).

    Google Scholar 

  28. M. Milas, M. Rinaudo, B. Tinland, and G. de Murcia, “Evidence for a single stranded xanthan chain by electron microscopy,” Polym. Bull. 19, 567–572 (1988).

    Article  Google Scholar 

  29. E. Dickinson, “Microgels—an alternative colloidal ingredient for stabilization of food emulsions,” Trends Food Sci. Technol. 43, 178–188 (2015).

    Article  Google Scholar 

  30. J. G. Southwick, A. M. Jamieson, and J. Blackwell, “Quasi-elastic light scattering studies of semidilute xanthan solutions,” Macromolecules 14, 1728–1732 (1981).

    Article  Google Scholar 

  31. J. G. Southwick, A. M. Jamieson, and J. Blackwell, “Conformation of xanthan dissolved in aqueous urea and sodium chloride solutions,” Carbohydr. Res. 99, 117–127 (1982).

    Article  Google Scholar 

  32. W. E. Rochefort and S. Middleman, “Rheology of xanthan gum: salt, temperature, and strain effects in oscillatory and steady shear experiments,” J. Rheol. 31, 337–369 (1987).

    Article  Google Scholar 

  33. A. B. Rodda, D. E. Dunstanb, and D. V. Bogera, “Characterisation of xanthan gum solutions using dynamic light scattering and rheology,” Carbohydr. Polym. 42, 159–174 (2000).

    Article  Google Scholar 

  34. P. D. Oliveira, R. C. Michel, A. J. A. McBride, A. S. Moreira, R. F. T. Lomba, and C. T. Vendruscolo, “Concentration regimes of biopolymers xanthan, tara, and clairana, comparing dynamic light scattering and distribution of relaxation time,” PLoS ONE 8, e62713 (2013).

    Article  Google Scholar 

  35. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Interscience, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Mityuk.

Additional information

Original Russian Text © A.E. Chalykh, V.V. Matveev, D.A. Muravlev, D.Yu. Mityuk, O.E. Philippova, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalykh, A.E., Matveev, V.V., Muravlev, D.A. et al. Nanostructure of xanthan networks. Nanotechnol Russia 12, 1–8 (2017). https://doi.org/10.1134/S1995078017010037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017010037

Navigation