Skip to main content
Log in

Kinetic analyses of colloidal crystallization in shear flow

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Colloidal crystallization kinetics is studied in the shear flow of a suspension of colloidal silica spheres (110 nm in diameter), using a continuously-circulating type of stopped flow cell system. The crystallization rate from a suspension containing a small amount of nuclei and/or single crystals is high compared with that from a suspension containing no nuclei and/or single crystals. Crystal growth takes place at shear rates smaller than 3.4 s−1 and at sphere concentrations higher than a volume fraction of 0.004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ackerson BJ, Clark NA (1981) Phys Rev Lett 46:123

    Google Scholar 

  2. Aastuen DJW, Clark NA, Swindal JC, Muzny CD (1990) Phase Transit 21:139

    CAS  Google Scholar 

  3. Lowen H, Palberg T, Simon R (1993) Phys Rev Lett 70:1557

    Article  PubMed  Google Scholar 

  4. Grier DG, Murray CA (1994) J Chem Phys 100:9088

    Article  CAS  Google Scholar 

  5. Wurth M, Schwarz J, Culis F, Leiderer P, Palberg T (1995) Phys Rev E 52:6145

    Google Scholar 

  6. Stevens MJ, Falk ML, Robbins MO (1996) J Chem Phys 104:5209

    Article  CAS  Google Scholar 

  7. Ripoll MS, Tejero CF, Baus M (1996) Physica A 234:311

    Article  CAS  Google Scholar 

  8. Okubo T (1994) In: Schmitz KS (ed) Macro-ion characterization: from dilute solutions to complex fluids. ACS Symp Series 548. ACS, Washington DC, pp 364–380

  9. Okubo T (1994) Langmuir 10:1695

    CAS  Google Scholar 

  10. Okubo T (1988) J Chem Soc Farad T 1 84:1163

    CAS  Google Scholar 

  11. Okubo T, Okada S, Tsuchida A (1997) J Colloid Interf Sci 189:337

    Article  CAS  Google Scholar 

  12. Okubo T, Okada, S (1997) J Colloid Interf Sci 192:490

    Article  CAS  Google Scholar 

  13. Okubo T, Okada S (1998) J Colloid Interf Sci 204:198

    Article  CAS  Google Scholar 

  14. Okubo T, Ishiki H (1999) J Colloid Interf Sci 211:151

    Article  CAS  Google Scholar 

  15. Okubo T, Ishiki H (2000) J Colloid Polym Sci 228:151

    Article  CAS  Google Scholar 

  16. Okubo T, Tsuchida A, Kato T (1999) Colloid Polym Sci 277:191

    Article  CAS  Google Scholar 

  17. Okubo T, Tsuchida A, Okuda T, Fujitsuna K, Ishikawa M, Morita T, Tada T (1999) Colloid Surface A 160:311; (1999) Colloid Surface A 153:515

    Article  CAS  Google Scholar 

  18. Okubo T, Tsuchida A, Takahashi S, Taguchi K, Ishikawa M (2000) Colloid Polym Sci 278:202

    Article  CAS  Google Scholar 

  19. Tsuchida A, Taguchi K, Takyo E, Yoshii H, Kiriyama K, Okubo T, Ishikawa M (2000) Colloid Polym Sci 278:872

    Article  CAS  Google Scholar 

  20. Okubo T, Ishiki H, Kimura H, Chiyoda M, Yoshinaga K (2002) Colloid Polym Sci 280:290

    Article  CAS  Google Scholar 

  21. Yoshinaga K, Chiyoda M, Ishiki H, Okubo T (2002) Colloid Surface 204:285

    Article  CAS  Google Scholar 

  22. Pusey PN, van Megen W (1987) In: Safan SA, Clark NA (eds) Complex and supramolecular fluids. Wiley, New York, pp 673–698

  23. Davis KE, Russel WB (1988) Ceram Trans B 1:693

    CAS  Google Scholar 

  24. Russel WB (1990) Phase Transit 21:127

    Google Scholar 

  25. Harkless CR, Singh MA, Nagler SE, Stephenson GB, Jordan-Sweet JL (1990) Phys Rev Lett 64:2285

    Article  CAS  PubMed  Google Scholar 

  26. Dhont JKG, Smits C, Lekkerkerker HNW (1992) J Colloid Interf Sci 152:386

    CAS  Google Scholar 

  27. Schatzel K, Ackerson BJ (1992) Phys Rev Lett 68:337

    Article  CAS  PubMed  Google Scholar 

  28. Schatzel K, Ackerson BJ (1993) Phys Rev E 48:3766

    Article  Google Scholar 

  29. Verhaegh NAM, van Blaaderen A (1994) Langmuir 10:1427

    CAS  Google Scholar 

  30. Butler S, Harrowell P (1995) Phys Rev E 52:6424

    Article  CAS  Google Scholar 

  31. van Megen W (1995) Transport Theor Stat 24:1017

    Google Scholar 

  32. Ackerson BJ, Schatzel K (1995) Phys Rev E 52:6448

    Article  CAS  Google Scholar 

  33. Rintoul MD, Torquato S (1996) J Chem Phys 105:9258

    Article  CAS  Google Scholar 

  34. He Y, Ackerson BJ, van Megen W, Underwood WM, Schatzel K (1996) Phys Rev E 54:5286

    Article  CAS  Google Scholar 

  35. Harland JL, van Megen W (1997) Phys Rev E 55:3054

    Article  CAS  Google Scholar 

  36. Derber S, Palberg T, Schatzel K, Vogel J (1997) Physica A 235:204

    Article  CAS  Google Scholar 

  37. Phan SE, Li M, Russel WB, Zhu J, Chaikin PM, Lant CT (1999) Phys Rev E 60:1985

    Article  Google Scholar 

  38. Amos RM, Parity JG, Tapster PR, Shephend TJ, Kitson SC (2000) Phys Rev E 61:2929

    Article  CAS  Google Scholar 

  39. Heymann A, Sinn C, Palberg T (2000) Phys Rev E 62:813

    Google Scholar 

  40. Jardine RS, Barglett P (2002) Colloid Surf 211:127

    Article  CAS  Google Scholar 

  41. Vanderhoff W, van de Hul Hj, Tausk RJM, Overbeek JTG (1970) In: Goldfinger G (ed) Clean surfaces: their preparation and characterization for interfacial studies. Marcel Dekker, New York, pp 13–44

  42. Hiltner PA, Papir YS, Krieger IM (1971) J Phys Chem 75:1881

    CAS  Google Scholar 

  43. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) J Colloid Interf Sci 44:330

    CAS  Google Scholar 

  44. Williams R, Crandall RS, Wojtowicz PJ (1976) Phys Rev Lett 37:348

    Article  Google Scholar 

  45. Mitaku S, Ohtsuki T, Enari K, Kishimoto A, Okano K (1978) Jpn J Appl Phys 17:305

    CAS  Google Scholar 

  46. Lindsay HM, Chaikin PM (1982) J Chem Phys 76:3774

    CAS  Google Scholar 

  47. Peranski P (1983) Contemp Phys 24:25

    CAS  Google Scholar 

  48. Ottewill RH (1983) Ber Bunsen Phys Chem 89:517

    Google Scholar 

  49. Aastuen DJW, Clark NA, Cotter LK, Ackerson BJ (1986) Phys Rev Lett 57:1733

    Article  CAS  PubMed  Google Scholar 

  50. Pusey PN, van Megen W (1986) Nature 320:340

    CAS  Google Scholar 

  51. Okubo T (1988) Acc Chem Res 21:281

    CAS  Google Scholar 

  52. Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge Univ Press, Cambridge, UK

  53. Stevens MJ, Falk ML, Robins MO (1996) J Chem Phys 104:5209

    Article  CAS  Google Scholar 

  54. Okubo T (1993) Prog Polym Sci 15:481

    Article  Google Scholar 

  55. Okubo T (1997) Curr Top Colloid Interface Sci 1:169

    CAS  Google Scholar 

  56. Okubo T (2001) In: Hubbard A (ed) Encyclopedia of surface and colloid science. ACS, Washington DC

  57. Wilson HA (1900) Philos Mag 50:238

    Google Scholar 

  58. Frenkel J (1932) Phys Z Sowjetunion 1:498

    CAS  Google Scholar 

Download references

Acknowledgements

The Frontier Research Project of the Japan Space Utilization Promotion Center is acknowledged for producing the measuring instruments. The Ministry of Education, Culture, Sports, Science and Technology, Japan is thanked for grants-in-aid for Scientific Research in Priority Area (A) (11167241). Drs. M. Komatsu and M. Hirai of Catalyst & Chemical Ind. Co. (Tokyo) are thanked deeply for providing the sample suspension of the colloidal silica spheres.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuchida, A., Takyo, E., Taguchi, K. et al. Kinetic analyses of colloidal crystallization in shear flow. Colloid Polym Sci 282, 1105–1110 (2004). https://doi.org/10.1007/s00396-003-1043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-1043-6

Keywords

Navigation