Skip to main content

Advertisement

Log in

Biodegradable and bioactive hybrid organic–inorganic PEG-siloxane fibers. Preparation and characterization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A mixture of triethoxysilanefunctionalized poly(ethylene glycol), f-PEG, and tetraethoxysilane, TEOS, was used as precursors in the preparation of continuous hybrid f-PEG-siloxane sol–gel derived fibers. The fibers were spun by extrusion through a spinneret. The thus prepared fibers had a diameter of 20–50 μm. 29Si-CPMAS NMR measurements confirmed that the functionalized PEG is incorporated into the siloxane network through covalent bonds. The hybrid fiber elasticity was much higher than that of fibers spun from sols with TEOS as the only source for silica. However, the f-PEG chain length plays a crucial role for the spinnability of the sol, since, as a result of bridging flocculation, macroscopic phase separation occurred readily with increasing chain length of the f-PEG. The fibers were shown to be effective substrates for the nucleation and growth of bone-like hydroxyapatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1.
Fig. 2.
Fig. 3. a
Fig. 4.

Similar content being viewed by others

References

  1. Martin RI, Brown PW (1994) J Mater Sci: Mater Med 5:96

    Google Scholar 

  2. Serro AP, Fernandes AC, Saramago B, Lima J, Barbosa MA (1997) Biomaterials 18:963

    Article  CAS  PubMed  Google Scholar 

  3. Brinker J, Scherer GW (1990) Sol–gel science. Academic Press, San Diego

  4. Li P, Ohutski C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) J Am Ceram Soc 77:1307

    CAS  Google Scholar 

  5. Kursawe M, Glaubitt W, Therauf A (1998) J Sol-Gel Sci Technol 13:267

    Google Scholar 

  6. Peltola T, Jokinen M, Veittola S, Rahiala H, Yli-Urpo A (2001) Biomaterials 22:589

    Article  CAS  PubMed  Google Scholar 

  7. Oréfice RL, Hench LL, Clark AE, Brennan AB (2001) J Biomed Mater Res 55:460

    Article  PubMed  Google Scholar 

  8. Domingues RZ, Clark AE, Brennan AB (2001)J Biomed Mater Res 55:468

    Article  CAS  PubMed  Google Scholar 

  9. Czuryszkiewicz T, Ahvenlammi J, Kortesuo P, Ahola M, Kleitz F, Jokinen M, Lindén M, Rosenholm JB (2002) J Non-Crystal Solids 306:1

    Google Scholar 

  10. Sanchez C, Ribot F (1994) New J Chem 18:1007

    CAS  Google Scholar 

  11. Tian D, Dubois Ph, Jérôme R (1996) Polymer 37:3983

    Article  CAS  Google Scholar 

  12. Tian D, Dubois Ph, Granfls Ch, Jérôme R, Viville P, Lazzaroni R, Brédas JL, Leprince P (1997) Chem Mater 9:871

    Article  CAS  Google Scholar 

  13. Tian D, Dubois Ph, Jérôme R (1997) J Polym Sci Polym Chem 35:2295

    Article  CAS  Google Scholar 

  14. Tian D, Blacher S, Dubois Ph, Jérôme R (1998) Polymer 39:855

    Article  CAS  Google Scholar 

  15. Tian D, Blacher S, Pirard JP, Jérôme R (1998) Langmuir 14, 1905

  16. Ahvenlammi J, Nousiainen P, Jokinen M, Peltola T (2000) In: Proceedings of the International Conference 'FiberMed 2000', Fibrous products in medical and health care. Fiber Technology and Clothing Science, Tampere University of Technology, Tampere, Finland, pp 175–185

  17. Peltola T, Jokinen M, Veittola S, Rahiala H, Yli-Urpo A (2001) Biomaterials 22:589

    Article  CAS  PubMed  Google Scholar 

  18. Helminen A, Korhonen H, Seppälä JV (2001) Polymer 42:3345

    Article  CAS  Google Scholar 

  19. Sarmento VHV, Dahmouche K, Santilli CV, Pulcinelli SH (2002) J Non-Crystal Solids 304:134

    Google Scholar 

  20. Watson H, Nordström A, Root A, Matisons J, Rosenholm JB (2001) J Adhesion Sci Technol 15:1103

    Article  CAS  Google Scholar 

  21. Kursawe M, Glaubitt W, Blau C (1999) In: Vincenzini P (ed) Proceedings of the 9th Cimtec—World Forum on New Materials, Symposium, XI. Materials in clinical applications. Techna Srl, Florence, Italy, p 93

  22. Brinker CJ, Assink RA (1989) J Non-Crystal Solids 111:48

    Google Scholar 

  23. Vallet-Regi M, Perez-Pariente J, Izquiredo-Barba I, Salinas A (2000) Chem Mater 12:3770

    Article  CAS  Google Scholar 

  24. Areva S, Peltola T, Säilynoja E, Laajalehto K, Lindén M, Rosenholm JB (2002) Chem Mater 14:1614

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Finnish National Technology Agency, TEKES, is gratefully acknowledged for financial support. Dr. Andrew Root, Fortum Gas and Oil Oy, Porvoo, Finland, is acknowledged for the 29Si-MAS NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lindén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granqvist, B., Helminen, A., Vehviläinen, M. et al. Biodegradable and bioactive hybrid organic–inorganic PEG-siloxane fibers. Preparation and characterization. Colloid Polym Sci 282, 495–501 (2004). https://doi.org/10.1007/s00396-003-0973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0973-3

Keywords

Navigation