Skip to main content
Log in

Influence of prepolymers molecular weight on the viscoelastic properties of aqueous HEUR solutions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A series of hydrophobically modified ethoxylated urethanes (HEURs) were synthesized by a step growth polymerization of polyethylene glycol with dicyclohexylmethane diisocyanate (H12MDI). The thickeners were produced with different sizes of the hydrophilic section by changing the molar ratios of reactants. The size of the hydrophobic ends was constant for all prepared samples. The changes in hydrophilic lengths were correlated with the rheological properties of HEURs aqueous solutions. The intrinsic viscosity measurements showed that associates are present even at very low concentration. The response of these HEUR systems in aqueous solution to both steady shear and oscillatory shear was determined as a function of hydrophilic chain length and polymer concentration. Dramatic increases in viscosity are observed with decreasing molecular weight of the prepolymer (with a decrease of the hydrophilic components' size and at the same time an increased ratio between hydrophobic and hydrophilic sections of HEURs). Also, a steep increase in viscosity with increasing thickener concentration is obtained. The rheological properties of aqueous solutions of HEUR polymers can be described using a simple Maxwell model with a single relaxation. The dynamic measurements verified the results obtained from the steady state measurements about the hydrophilic section size and its effect on the association phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Annable T, Buscall R, Ettelaie R, Shepherd P, Wittlestone D (1994) Langmuir 10:1060

    CAS  Google Scholar 

  2. Lundberg DJ, Brown RG, Glass JE, Eley RR (1994) Langmuir 10:3027

    CAS  Google Scholar 

  3. Kaczmarski JP, Glass JE (1994) Langmuir 10:3035

    CAS  Google Scholar 

  4. Annable T, Ettelaie R (1994) Macromolecules 27:5616

    CAS  Google Scholar 

  5. Yekta A, Xu B, Duhamel J, Adiwidjaja H, Winnik MA (1995) Macromolecules 28:956

    CAS  Google Scholar 

  6. Alami E, Almgren M, Brown W, Francois J (1996) Macromolecules 29:2229

    Article  CAS  Google Scholar 

  7. May R, Kaczmarski JP, Glass JE (1996) Macromolecules 29:4745

    CAS  Google Scholar 

  8. Winik MA, Yekta A (1997) Curr Opin Colloid Interface Sci 2:242

    Google Scholar 

  9. Xu B, Li L, Zhang K, Macdonald PM, Winnik MA (1997) Langmuir 13:6896

    CAS  Google Scholar 

  10. Tirtaatmadja V, Tam KC, Jenkins RD (1997) Macromolecules 30:1426

    Article  CAS  Google Scholar 

  11. Cathebras N, Collet A, Viguier M (1998) Macromolecules 31:1305

    Article  CAS  Google Scholar 

  12. Mewis J, Kaffashi B, Vermant J, Butera RJ (2001) Macromolecules 34:1376

    Article  CAS  Google Scholar 

  13. Lundberg DJ, Glass JE (1991) J Rheology 35:1225

    Google Scholar 

  14. Macheling-Strasser C, Clouet F, Francois J (1992) Polymer 33:1021

    Article  Google Scholar 

  15. Lundberg DJ, Brown RG, Glass JE, Eley RR (1994) Langmuir 10:3027

    CAS  Google Scholar 

  16. Wetzel W, Tarng MR, Glass JE (1995) Polym Mater Sci Eng 73 (Fall)

  17. Chassenieux C, Nicolai T, Durand D (1997) Macromolecules 30:4952

    CAS  Google Scholar 

  18. Tam KC, Jenkins RD, Winnik MA, Bassett DR (1998) Macromolecules 31:4149

    CAS  Google Scholar 

  19. Chassenieux C, Nicolai T, Durand D (1998) Macromolecules 31:4035

    Article  CAS  Google Scholar 

  20. Cathebras N, Collet A, Viguier M (1998) Macromolecules 31:1305

    Article  CAS  Google Scholar 

  21. Glass JE (1999) Adv Colloid Interface Sci 79:123

    Article  CAS  Google Scholar 

  22. Uemura Y, Macdonald PM (1996) Macromolecules 29:63

    Article  CAS  Google Scholar 

  23. Glass JE (ed) (1996) Hydrophilic polymers: performance with environmental acceptance. Advances in Chemistry Series 248, ACS, Washington, Ch 10

    Google Scholar 

  24. Kaczmarski JP, Glass JE (1993) Macromolecules 26:5149

    CAS  Google Scholar 

  25. Annable T, Buscall R, Ettelaie R, Whittlestone D (1993) J Rheology 37 (July/Aug)

  26. Kaczmarski JP, Glass JE (1994) Langmuir 10:3035

    CAS  Google Scholar 

  27. Barmar M, Barikani M, Kaffashi B (2001) Iranian Polym J 10:331

    CAS  Google Scholar 

  28. Ma SX, Cooper SL (2001) Macromolecules 34:3294

    Article  CAS  Google Scholar 

  29. Green MS, Tobolsky AV (1946) J Chem Phys 14:80

    CAS  Google Scholar 

  30. Pham QT, Russel WB, Thibeault JC, Lau W (1999) Macromolecules 32:5139

    CAS  Google Scholar 

  31. Jenkins RD (1990) PhD thesis. Lehigh University, Bethlehem, PA

Download references

Acknowledgements

M. B. thanks the members of the Rheology lab of the Institut für Chemie der Karl-Franzens-Universität Graz, and also the opportunity provided for him to stay in the lab for the rheological measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pfragner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barmar, M., Ribitsch, V., Kaffashi, B. et al. Influence of prepolymers molecular weight on the viscoelastic properties of aqueous HEUR solutions. Colloid Polym Sci 282, 454–460 (2004). https://doi.org/10.1007/s00396-003-0968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0968-0

Keywords

Navigation