Skip to main content
Log in

Second critical micelle concentration of dodecyldimethylbenzylammonium chloride in aqueous solution at 25 °C

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Two breaks have been found on the conductivity, refractive index, density and sound velocity against molality plots for aqueous solutions of dodecyldimethylbenzylammonium chloride at 25 °C, in the absence of any additive. The first break corresponds to the critical micelle concentration, cmc. The second, less distinct break, occurring in the molality range of 0.082 to 0.104 mol kg-1, in dependence on the technique applied, has been ascribed to the second critical micelle concentration, 2nd cmc, responsible for structural transitions of spherical micelles. Values of cmc and 2nd cmc have been also estimated conductometrically for tetradecyltrimethylammonium bromide and dodecylpyridinium chloride. On the basis of available conductometric data it has been shown that the 2nd cmc/cmc ratio varies in the range of 2 to 10 in dependence on the type of 1:1 ionic surfactant. It has been also shown that for a given class of surfactants, the logarithm of 2nd cmc varies linearly with the number of carbon atoms in the alkyl chain ( n= 12, 14 and 16). Both empirical regression coefficients depend upon the class of surfactants considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Israelachvili J (1995) Intermolecular & Surface Forces. Academic Press, San Diego

  2. Nagarajan R (2002) Langmuir 18:31

    Article  CAS  Google Scholar 

  3. Miura M, Kodama M (1972) Bull Chem Soc Jpn 45:428

    CAS  Google Scholar 

  4. Ekwall P, Lemström KE, Eikrem H, Holmberg P (1967) Acta Chem Scand 21:1401

    CAS  Google Scholar 

  5. Reiss-Husson F, Luzzatti V (1964) J Phys Chem 88:3904

    Google Scholar 

  6. May S, Ben-Shaul A (2001) J Phys Chem B 105:640

    Article  Google Scholar 

  7. Imae T, Ikeda S (1986) J Phys Chem 90:5216

    CAS  Google Scholar 

  8. Swanson-Vethamuthu M, Feitosa E, Brown W (1998) Langmuir 14:1590

    Article  CAS  Google Scholar 

  9. Pisárcik M, Devínsky F, Svajdlenka E (1996) Colloids and Surfaces A 119:115

    Google Scholar 

  10. Zielinski R (1998) Polish J Chem 72:127

    CAS  Google Scholar 

  11. Miyagishi S (1976) Bull Chem Soc Jpn 49:34

    CAS  Google Scholar 

  12. Lianos P, Zana R (1984) J Colloid Interface Sci 101:587

    CAS  Google Scholar 

  13. Treiner C, Chattopadhyay AK, Bury R (1985) J Colloid Inteface Sci 104:569

    CAS  Google Scholar 

  14. Quirion F, Desnoyers JE (1987) J Colloid Interface Sci 115:176

    CAS  Google Scholar 

  15. Treiner C, Makayssi A (1992) Langmuir 8:794

    CAS  Google Scholar 

  16. Del Castillo JL, Czapkiewicz J, González-Pérez A, Rodríguez JR (2000) Colloids Surf A 166:161

    Google Scholar 

  17. González-Pérez A, Del Castillo JL, Czapkiewicz J, Rodríguez JR (2001) J Phys Chem B 105:1720

    Article  Google Scholar 

  18. González-Pérez A, Czapkiewicz J, Del Castillo JL, Rodríguez JR (2001) Colloids Surf A 193:129

    Google Scholar 

  19. González-Pérez A, Del Castillo JL, Czapkiewicz J, Rodríguez JR (2002) Colloid Polym Sci 280:503

    Article  Google Scholar 

  20. Okano LT, El Seoud OA, Halstead TK (1997) Colloid Polym Sci 275:138

    Article  Google Scholar 

  21. Adderson JE, Taylor H (1971) J Pharm Pharmacol 23:311

    CAS  PubMed  Google Scholar 

  22. Trompette JL, Zajac J, Keh E, Partyka S (1994) Langmuir 10:812

    CAS  Google Scholar 

  23. Makayssi A, Bury R, Treiner C (1994) Langmuir 10:1359

    CAS  Google Scholar 

  24. Monk CB (1961) Electrolytic Dissociation. Academic Press, London

  25. De Lisi R, Fisicaro E, Milioto S (1988) J Sol Chem 17:1988

    Google Scholar 

  26. Stauff J (1938) Z Phys Chem A 183:55

    Google Scholar 

  27. Klevens HB (1953) J Am Chem Soc 30:74

    CAS  Google Scholar 

  28. Kopecki F (1996) Pharmazie 51:135

    PubMed  Google Scholar 

  29. Chung MI, Tak IJ, Lee KM (1975) Taehan Hwahak Hoechi 19:398; (1976) CA 84 185293y

    CAS  Google Scholar 

  30. Hoffmann H, Rehage H, Platz G, Schorr W, Thurn H, Ulbricht W (1982) Colloid Polym Sci 260:1042

    CAS  Google Scholar 

Download references

Acknowledgement

One of the authors, G-P, wishes to thank Prof. A. Amigo from the Department of Applied Physics, U. S. C., for enabling him to make refractive index measurements. This work received financial support from Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Pérez, A., Czapkiewicz, J., Prieto, G. et al. Second critical micelle concentration of dodecyldimethylbenzylammonium chloride in aqueous solution at 25 °C. Colloid Polym Sci 281, 1191–1195 (2003). https://doi.org/10.1007/s00396-003-0905-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0905-2

Keywords

Navigation