Skip to main content
Log in

Atmospheric and electrochemical oxidation of ascorbic acid in anionic, nonionic and cationic surfactant systems

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract.

It is well known that the antioxidant activity of some species in homogenous solutions may not be the same as that in heterogeneous media. This environment dependence is the reason for investigating ascorbic acid antioxidant activity in surfactant solutions. In our study we have investigated the kinetics of atmospheric oxidation and electrochemical oxidation of ascorbic acid in aqueous solutions of the four surfactants: SDS, AOT (anionic), TRITON-100 (nonionic), and CTAB (cationic). For each surfactant the concentrations below and above CMC were investigated. As expected, a general trend in the atmospheric oxidation rate changes in the following manner: the micellar solution of nonionic surfactant shows a faster oxidation rate than that of the anionic surfactant, and the cationic surfactant an even higher one. The more subtle effects were observed with each surfactant concentration change. The influence of the surfactants on the electrochemical behavior of ascorbic acid was also studied. A general conclusion emerging from our investigation is that surfactants shift the ascorbic acid oxidation potential and change the peak current value. This phenomenon is due mainly to the surfactant film formed at the electrode/solution interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Davies MB, Austin J, Partridge DA (1991) Vitamin C: Its chemistry and biochemistry. The Royal Society of Chemistry Paperbacks, Thomas Graham House, Science Park, Cambridge

    Google Scholar 

  2. Manzanares MI, Solís V, de Rossi RH (1991) J Electroanal Chem 407:141

    Article  Google Scholar 

  3. Friedrich W (1988) Vitamins. WdeG, de Gruyter

  4. Ormonde DE, O'Neill RD (1990) J Electroanal Chem 279:109

    Article  CAS  Google Scholar 

  5. Wen XL, Han ZX, Rieker A, Liu ZL (1997) J Chem Research (S):108

  6. Wen XL, Jia YH, Liu ZL (1999) Talanta 50:1027

    Article  CAS  Google Scholar 

  7. Szymula M, Szczypa J, Friberg SE (2002) J Dispersion Sci Technol 23 (6):1

  8. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New York

  9. Zheng L, Li F, Hao J, Li G (1995) Colloids Surf A: Physicochem Eng Aspects 98:11

  10. Paredes S, Tribout M, Ferreira J, Leonis J (1976) Colloid Polym Sci 254:637

    CAS  Google Scholar 

  11. Szymula M (1990) Ph.D. Thesis UMCS Lublin Poland

  12. Linke WF (1965) Solubilities of inorganic and metal-organic compounds: A compilation of solubility data from the periodical literature, 4th edn. American Chemical Society, Washington, D.C.

  13. Han YK, Oh SG, Shin SI, Joung WD, Yi SC, Cho CG (2002) Colloid Surf B: Biointerfaces 24:33

  14. Abraham MH, Chadha HS, Dixon JP, Rafos C, Treiner C (1995) J Chem Soc Perkin Trans 2:887

    Google Scholar 

  15. Chaimovich H, Cuccovia IM (1997) Colloid Polym Sci 103:67

    CAS  Google Scholar 

  16. Bunton CA, Gillitt ND, Mhala MM, Moffatt JR, Yatsimirsky AK (2000) Langmuir 16:8595

    Article  CAS  Google Scholar 

  17. Stilbs P (1983) J Colloid Interface Sci 94 (2):463

  18. Shah SS, Saeed A, Sharif QM (1999) Colloids Surf 155:405

    Article  CAS  Google Scholar 

  19. Hu IF, Kuwana T (1986) Anal Chem 58:3235

    CAS  Google Scholar 

  20. Karabinas P, Jannakoudakis D (1984) J Electroanal Chem 160:59

    Article  Google Scholar 

  21. Casella IG, Electroanalysis (1996) 8(2): 128

  22. Ruiz JJ, Rodrigez-Mellado JM, Dominguez M, Aldaz A (1989) J Chem Soc Faraday Trans 1 85(7):1567

    CAS  Google Scholar 

  23. Saba J (1995) Collect Czech Chem Commun 60:1457

    Article  CAS  Google Scholar 

  24. Saba J (1996) Electrochimica Acta 41(2):297

    Article  CAS  Google Scholar 

  25. Downard AJ, Roddick AD (1994) Electroanalysis (1995) 7(4):376

  26. Sykut K, Dalmata G, Nowicka B, Saba J (1978) J Electroanal Chem 90:299

    Article  CAS  Google Scholar 

  27. Korolczuk M (2000) Talanta 53:679

    Article  CAS  Google Scholar 

  28. Davidovic A, Tabakovic I, Davidovic D, Duic LJ (1990) Electroanal Chem 280:371

    Article  CAS  Google Scholar 

  29. Galus Z (1979) Elektrochemiczne Metody Wyznaczania Stałych Elektrochemicznych. PWN, Warszawa (in Polish)

  30. Wen XL, Zhang J, Liu ZL, Han ZX, Rieker A (1998) J Chem Soc Perkin Trans 2:905

    Article  Google Scholar 

  31. Kiraly Z, Findenegg GH (1998) J Phys Chem 102:1203

    Article  CAS  Google Scholar 

Download references

Acknowledgements.

We are very grateful to Professor J. Saba and Professor M. Korolczuk for valuable discussions and to Mgr. J. Szaran for his assistance with the measurements of differential capacity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Szymula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szymula, M., Narkiewicz-Michałek, J. Atmospheric and electrochemical oxidation of ascorbic acid in anionic, nonionic and cationic surfactant systems. Colloid Polym Sci 281, 1142–1148 (2003). https://doi.org/10.1007/s00396-003-0889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0889-y

Keywords

Navigation