Skip to main content

Advertisement

Log in

Comparison of the stage-dependent mitochondrial changes in response to pressure overload between the diseased right and left ventricle in the rat

  • Mitochondria at the heart of cardioprotection
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The right ventricle (RV) differs developmentally, anatomically and functionally from the left ventricle (LV). Therefore, characteristics of LV adaptation to chronic pressure overload cannot easily be extrapolated to the RV. Mitochondrial abnormalities are considered a crucial contributor in heart failure (HF), but have never been compared directly between RV and LV tissues and cardiomyocytes. To identify ventricle-specific mitochondrial molecular and functional signatures, we established rat models with two slowly developing disease stages (compensated and decompensated) in response to pulmonary artery banding (PAB) or ascending aortic banding (AOB). Genome-wide transcriptomic and proteomic analyses were used to identify differentially expressed mitochondrial genes and proteins and were accompanied by a detailed characterization of mitochondrial function and morphology. Two clearly distinguishable disease stages, which culminated in a comparable systolic impairment of the respective ventricle, were observed. Mitochondrial respiration was similarly impaired at the decompensated stage, while respiratory chain activity or mitochondrial biogenesis were more severely deteriorated in the failing LV. Bioinformatics analyses of the RNA-seq. and proteomic data sets identified specifically deregulated mitochondrial components and pathways. Although the top regulated mitochondrial genes and proteins differed between the RV and LV, the overall changes in tissue and cardiomyocyte gene expression were highly similar. In conclusion, mitochondrial dysfuntion contributes to disease progression in right and left heart failure. Ventricle-specific differences in mitochondrial gene and protein expression are mostly related to the extent of observed changes, suggesting that despite developmental, anatomical and functional differences mitochondrial adaptations to chronic pressure overload are comparable in both ventricles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The rat RNA-seq. data sets of this study have been submitted to GEO: GSE216264 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE216264). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [38] partner repository with the dataset identifier PXD047022. The remaining supporting data of the present study are available in the article and its supplementary information.

References

  1. Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742-750. https://doi.org/10.1152/ajpheart.1994.267.2.H742

    Article  CAS  PubMed  Google Scholar 

  2. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, Brunner-La Rocca HP, Choi DJ, Chopra V, Chuquiure-Valenzuela E, Giannetti N, Gomez-Mesa JE, Janssens S, Januzzi JL, Gonzalez-Juanatey JR, Merkely B, Nicholls SJ, Perrone SV, Pina IL, Ponikowski P, Senni M, Sim D, Spinar J, Squire I, Taddei S, Tsutsui H, Verma S, Vinereanu D, Zhang J, Carson P, Lam CSP, Marx N, Zeller C, Sattar N, Jamal W, Schnaidt S, Schnee JM, Brueckmann M, Pocock SJ, Zannad F, Packer M (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385:1451–1461. https://doi.org/10.1056/NEJMoa2107038

    Article  CAS  PubMed  Google Scholar 

  3. Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116:434–448. https://doi.org/10.1161/CIRCULATIONAHA.107.702795

    Article  CAS  PubMed  Google Scholar 

  4. Badolia R, Ramadurai DKA, Abel ED, Ferrin P, Taleb I, Shankar TS, Krokidi AT, Navankasattusas S, McKellar SH, Yin M, Kfoury AG, Wever-Pinzon O, Fang JC, Selzman CH, Chaudhuri D, Rutter J, Drakos SG (2020) The role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure. Circulation 142:259–274. https://doi.org/10.1161/CIRCULATIONAHA.119.044452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bugger H, Byrne NJ, Abel ED (2022) Animal models of dysregulated cardiac metabolism. Circ Res 130:1965–1993. https://doi.org/10.1161/CIRCRESAHA.122.320334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–171. https://doi.org/10.1016/j.cell.2013.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cordero-Reyes AM, Gupte AA, Youker KA, Loebe M, Hsueh WA, Torre-Amione G, Taegtmeyer H, Hamilton DJ (2014) Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. J Mol Cell Cardiol 68:98–105. https://doi.org/10.1016/j.yjmcc.2013.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, Bonnefoy-Cudraz E, Guerin P, Elbaz M, Delarche N, Coste P, Vanzetto G, Metge M, Aupetit JF, Jouve B, Motreff P, Tron C, Labeque JN, Steg PG, Cottin Y, Range G, Clerc J, Claeys MJ, Coussement P, Prunier F, Moulin F, Roth O, Belle L, Dubois P, Barragan P, Gilard M, Piot C, Colin P, De Poli F, Morice MC, Ider O, Dubois-Rande JL, Unterseeh T, Le Breton H, Beard T, Blanchard D, Grollier G, Malquarti V, Staat P, Sudre A, Elmer E, Hansson MJ, Bergerot C, Boussaha I, Jossan C, Derumeaux G, Mewton N, Ovize M (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–1031. https://doi.org/10.1056/NEJMoa1505489

    Article  CAS  PubMed  Google Scholar 

  9. Dirkx E, Gladka MM, Philippen LE, Armand AS, Kinet V, Leptidis S, El Azzouzi H, Salic K, Bourajjaj M, da Silva GJ, Olieslagers S, van der Nagel R, de Weger R, Bitsch N, Kisters N, Seyen S, Morikawa Y, Chanoine C, Heymans S, Volders PG, Thum T, Dimmeler S, Cserjesi P, Eschenhagen T, da Costa Martins PA, De Windt LJ (2013) Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol 15:1282–1293. https://doi.org/10.1038/ncb2866

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez-Caggiano M, Kamynina A, Francois AA, Prysyazhna O, Eykyn TR, Krasemann S, Crespo-Leiro MG, Vieites MG, Bianchi K, Morales V, Domenech N, Eaton P (2020) Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nat Metab 2:1223–1231. https://doi.org/10.1038/s42255-020-00276-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galaxy Community (2022) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 50:W345–W351. https://doi.org/10.1093/nar/gkac247

    Article  CAS  Google Scholar 

  12. Garcia-Lunar I, Jorge I, Saiz J, Solanes N, Dantas AP, Rodriguez-Arias JJ, Ascaso M, Galan-Arriola C, Jimenez FR, Sandoval E, Nuche J, Moran-Garrido M, Camafeita E, Rigol M, Sanchez-Gonzalez J, Fuster V, Vazquez J, Barbas C, Ibanez B, Pereda D, Garcia-Alvarez A (2024) Metabolic changes contribute to maladaptive right ventricular hypertrophy in pulmonary hypertension beyond pressure overload: an integrative imaging and omics investigation. Basic Res Cardiol. https://doi.org/10.1007/s00395-024-01041-5

    Article  PubMed  Google Scholar 

  13. Gomez-Arroyo J, Mizuno S, Szczepanek K, Van Tassell B, Natarajan R, dos Remedios CG, Drake JI, Farkas L, Kraskauskas D, Wijesinghe DS, Chalfant CE, Bigbee J, Abbate A, Lesnefsky EJ, Bogaard HJ, Voelkel NF (2013) Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 6:136–144. https://doi.org/10.1161/CIRCHEARTFAILURE.111.966127

    Article  CAS  PubMed  Google Scholar 

  14. Grabowski P, Kustatscher G, Rappsilber J (2018) Epigenetic variability confounds transcriptome but not proteome profiling for coexpression-based gene function prediction. Mol Cell Proteom : MCP 17:2082–2090. https://doi.org/10.1074/mcp.RA118.000935

    Article  CAS  PubMed  Google Scholar 

  15. Gustafsson AB, Gottlieb RA (2008) Heart mitochondria: gates of life and death. Cardiovasc Res 77:334–343. https://doi.org/10.1093/cvr/cvm005

    Article  CAS  PubMed  Google Scholar 

  16. Havlenova T, Skaroupkova P, Miklovic M, Behounek M, Chmel M, Jarkovska D, Sviglerova J, Stengl M, Kolar M, Novotny J, Benes J, Cervenka L, Petrak J, Melenovsky V (2021) Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci Rep 11:17136. https://doi.org/10.1038/s41598-021-96618-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heusch G (2022) Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol 117:1. https://doi.org/10.1007/s00395-022-00909-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F (2023) Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 67:102894. https://doi.org/10.1016/j.redox.2023.102894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holzem KM, Vinnakota KC, Ravikumar VK, Madden EJ, Ewald GA, Dikranian K, Beard DA, Efimov IR (2016) Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts. FASEB J. 30:2698–2707. https://doi.org/10.1096/fj.201500118R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hwang HV, Sandeep N, Nair RV, Hu DQ, Zhao M, Lan IS, Fajardo G, Matkovich SJ, Bernstein D, Reddy S (2021) Transcriptomic and functional analyses of mitochondrial dysfunction in pressure overload-induced right ventricular failure. J Am Heart Assoc 10:e017835. https://doi.org/10.1161/JAHA.120.017835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshita A (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363. https://doi.org/10.1161/01.res.85.4.357

    Article  CAS  PubMed  Google Scholar 

  22. Kaludercic N, Arusei RJ, Di Lisa F (2023) Recent advances on the role of monoamine oxidases in cardiac pathophysiology. Basic Res Cardiol 118:41. https://doi.org/10.1007/s00395-023-01012-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karamanlidis G, Bautista-Hernandez V, Fynn-Thompson F, Del Nido P, Tian R (2011) Impaired mitochondrial biogenesis precedes heart failure in right ventricular hypertrophy in congenital heart disease. Circ Heart Fail 4:707–713. https://doi.org/10.1161/CIRCHEARTFAILURE.111.961474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Knapp F, Niemann B, Li L, Molenda N, Kracht M, Schulz R, Rohrbach S (2020) Differential effects of right and left heart failure on skeletal muscle in rats. J Cachexia Sarcopenia Muscle 11:1830–1849. https://doi.org/10.1002/jcsm.12612

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kuznetsov AV, Javadov S, Margreiter R, Hagenbuchner J, Ausserlechner MJ (2022) Analysis of mitochondrial function, structure, and intracellular organization in situ in cardiomyocytes and skeletal muscles. Int J Mol Sci 23(4):2252. https://doi.org/10.3390/ijms23042252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3:965–976. https://doi.org/10.1038/nprot.2008.61

    Article  CAS  PubMed  Google Scholar 

  27. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED (2021) Cardiac energy metabolism in heart failure. Circ Res 128:1487–1513. https://doi.org/10.1161/CIRCRESAHA.121.318241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258. https://doi.org/10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

  29. Lucas DT, Szweda LI (1999) Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase. Proc Natl Acad Sci USA 96:6689–6693. https://doi.org/10.1073/pnas.96.12.6689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCommis KS, Kovacs A, Weinheimer CJ, Shew TM, Koves TR, Ilkayeva OR, Kamm DR, Pyles KD, King MT, Veech RL, DeBosch BJ, Muoio DM, Gross RW, Finck BN (2020) Nutritional modulation of heart failure in mitochondrial pyruvate carrier-deficient mice. Nat Metab 2:1232–1247. https://doi.org/10.1038/s42255-020-00296-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004. https://doi.org/10.1056/NEJMoa1409077

    Article  CAS  PubMed  Google Scholar 

  32. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151. https://doi.org/10.1056/NEJMra063052

    Article  PubMed  Google Scholar 

  33. Nguyen BY, Ruiz-Velasco A, Bui T, Collins L, Wang X, Liu W (2019) Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials. Br J Pharmacol 176:4302–4318. https://doi.org/10.1111/bph.14431

    Article  CAS  PubMed  Google Scholar 

  34. Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC (2017) Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution: part 3 of a 3-part series. J Am Coll Cardiol 70:230–251. https://doi.org/10.1016/j.jacc.2017.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Bohm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383:1413–1424. https://doi.org/10.1056/NEJMoa2022190

    Article  CAS  PubMed  Google Scholar 

  36. Padron-Barthe L, Villalba-Orero M, Gomez-Salinero JM, Acin-Perez R, Cogliati S, Lopez-Olaneta M, Ortiz-Sanchez P, Bonzon-Kulichenko E, Vazquez J, Garcia-Pavia P, Rosenthal N, Enriquez JA, Lara-Pezzi E (2018) Activation of serine one-carbon metabolism by calcineurin abeta1 reduces myocardial hypertrophy and improves ventricular function. J Am Coll Cardiol 71:654–667. https://doi.org/10.1016/j.jacc.2017.11.067

    Article  CAS  PubMed  Google Scholar 

  37. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Wurbel H (2020) The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Physiol 598:3793–3801. https://doi.org/10.1113/JP280389

    Article  CAS  PubMed  Google Scholar 

  38. Perez-Riverol Y, Bai J, Bandla C, Garcia-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaino JA (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543–D552. https://doi.org/10.1093/nar/gkab1038

    Article  CAS  PubMed  Google Scholar 

  39. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (esc). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail 18:891–975. https://doi.org/10.1002/ejhf.592

    Article  PubMed  Google Scholar 

  40. Potus F, Hindmarch CCT, Dunham-Snary KJ, Stafford J, Archer SL (2018) Transcriptomic signature of right ventricular failure in experimental pulmonary arterial hypertension: deep sequencing demonstrates mitochondrial, fibrotic, inflammatory and angiogenic abnormalities. Int J Mol Sci 19(9):2730. https://doi.org/10.3390/ijms19092730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quintana-Cabrera R, Mehrotra A, Rigoni G, Soriano ME (2018) Who and how in the regulation of mitochondrial cristae shape and function. Biochem Biophys Res Commun 500:94–101. https://doi.org/10.1016/j.bbrc.2017.04.088

    Article  CAS  PubMed  Google Scholar 

  42. Reddy S, Bernstein D (2015) Molecular mechanisms of right ventricular failure. Circulation 132:1734–1742. https://doi.org/10.1161/CIRCULATIONAHA.114.012975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rohrbach S, Yan X, Weinberg EO, Hasan F, Bartunek J, Marchionni MA, Lorell BH (1999) Neuregulin in cardiac hypertrophy in rats with aortic stenosis. differential expression of erbB2 and erbB4 receptors. Circulation 100:407–412. https://doi.org/10.1161/01.cir.100.4.407

    Article  CAS  PubMed  Google Scholar 

  44. Sabbah HN (2020) Targeting the mitochondria in heart failure: a translational perspective. JACC Basic to translational sci 5:88–106. https://doi.org/10.1016/j.jacbts.2019.07.009

    Article  Google Scholar 

  45. Scheubel RJ, Tostlebe M, Simm A, Rohrbach S, Prondzinsky R, Gellerich FN, Silber RE, Holtz J (2002) Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol 40:2174–2181. https://doi.org/10.1016/s0735-1097(02)02600-1

    Article  CAS  PubMed  Google Scholar 

  46. Schluter KD, Kutsche HS, Hirschhauser C, Schreckenberg R, Schulz R (2018) Review on chamber-specific differences in right and left heart reactive oxygen species handling. Front Physiol 9:1799. https://doi.org/10.3389/fphys.2018.01799

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schluter KD, Schreiber D (2005) Adult ventricular cardiomyocytes: isolation and culture. Methods Mol Biol 290:305–314. https://doi.org/10.1385/1-59259-838-2:305

    Article  PubMed  Google Scholar 

  48. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342. https://doi.org/10.1038/nature10098

    Article  CAS  PubMed  Google Scholar 

  49. Schwarzer M, Osterholt M, Lunkenbein A, Schrepper A, Amorim P, Doenst T (2014) Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure. J Physiol 592:3767–3782. https://doi.org/10.1113/jphysiol.2014.274704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shannon RP, Komamura K, Shen YT, Bishop SP, Vatner SF (1993) Impaired regional subendocardial coronary flow reserve in conscious dogs with pacing-induced heart failure. Am J Physiol 265:H801-809. https://doi.org/10.1152/ajpheart.1993.265.3.H801

    Article  CAS  PubMed  Google Scholar 

  51. Singh S, Gaur A, Sharma RK, Kumari R, Prakash S, Kumari S, Chaudhary AD, Prasun P, Pant P, Hunkler H, Thum T, Jagavelu K, Bharati P, Hanif K, Chitkara P, Kumar S, Mitra K, Gupta SK (2023) Musashi-2 causes cardiac hypertrophy and heart failure by inducing mitochondrial dysfunction through destabilizing Cluh and Smyd1 mRNA. Basic Res Cardiol 118:46. https://doi.org/10.1007/s00395-023-01016-y

    Article  CAS  PubMed  Google Scholar 

  52. Smith AC, Robinson AJ (2019) MitoMiner v4.0: an updated database of mitochondrial localization evidence, phenotypes and diseases. Nucleic Acids Res 47:D1225–D1228. https://doi.org/10.1093/nar/gky1072

    Article  PubMed  Google Scholar 

  53. Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16:154–160. https://doi.org/10.1038/ng0697-154

    Article  CAS  PubMed  Google Scholar 

  54. Stride N, Larsen S, Hey-Mogensen M, Sander K, Lund JT, Gustafsson F, Kober L, Dela F (2013) Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction. Eur J Heart Fail 15:150–157. https://doi.org/10.1093/eurjhf/hfs172

    Article  CAS  PubMed  Google Scholar 

  55. Sverdlov AL, Elezaby A, Qin F, Behring JB, Luptak I, Calamaras TD, Siwik DA, Miller EJ, Liesa M, Shirihai OS, Pimentel DR, Cohen RA, Bachschmid MM, Colucci WS (2016) Mitochondrial reactive oxygen species mediate cardiac structural, functional, and mitochondrial consequences of diet-induced metabolic heart disease. J Am Heart Assoc 5(1):e002555. https://doi.org/10.1161/JAHA.115.002555

    Article  PubMed  PubMed Central  Google Scholar 

  56. Swedberg K, Komajda M, Bohm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376:875–885. https://doi.org/10.1016/S0140-6736(10)61198-1

    Article  CAS  PubMed  Google Scholar 

  57. Thomas T, Yamagishi H, Overbeek PA, Olson EN, Srivastava D (1998) The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left-right sidedness. Dev Biol 196:228–236. https://doi.org/10.1006/dbio.1998.8849

    Article  CAS  PubMed  Google Scholar 

  58. Torrealba N, Aranguiz P, Alonso C, Rothermel BA, Lavandero S (2017) Mitochondria in structural and functional cardiac remodeling. Adv Exp Med Biol 982:277–306. https://doi.org/10.1007/978-3-319-55330-6_15

    Article  CAS  PubMed  Google Scholar 

  59. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  60. Tzimas C, Rau CD, Buergisser PE, Jean-Louis G Jr, Lee K, Chukwuneke J, Dun W, Wang Y, Tsai EJ (2019) WIPI1 is a conserved mediator of right ventricular failure. JCI Insight. https://doi.org/10.1172/jci.insight.122929

    Article  PubMed  PubMed Central  Google Scholar 

  61. Videira RF, Koop AMC, Ottaviani L, Poels EM, Kocken JMM, Dos Remedios C, Mendes-Ferreira P, Van De Kolk KW, Du Marchie Sarvaas GJ, Lourenco A, Llucia-Valldeperas A, Nascimento DA, De Windt LJ, De Man FS, Falcao-Pires I, Berger RMF, da Costa Martins PA (2022) The adult heart requires baseline expression of the transcription factor Hand2 to withstand right ventricular pressure overload. Cardiovasc Res 118:2688–2702. https://doi.org/10.1093/cvr/cvab299

    Article  CAS  PubMed  Google Scholar 

  62. Wang J, Ma Z, Carr SA, Mertins P, Zhang H, Zhang Z, Chan DW, Ellis MJ, Townsend RR, Smith RD, McDermott JE, Chen X, Paulovich AG, Boja ES, Mesri M, Kinsinger CR, Rodriguez H, Rodland KD, Liebler DC, Zhang B (2017) Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Mol Cell Proteom : MCP 16:121–134. https://doi.org/10.1074/mcp.M116.060301

    Article  CAS  PubMed  Google Scholar 

  63. Xu W, Comhair SAA, Chen R, Hu B, Hou Y, Zhou Y, Mavrakis LA, Janocha AJ, Li L, Zhang D, Willard BB, Asosingh K, Cheng F, Erzurum SC (2019) Integrative proteomics and phosphoproteomics in pulmonary arterial hypertension. Sci Rep 9:18623. https://doi.org/10.1038/s41598-019-55053-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 342:154–160. https://doi.org/10.1056/NEJM200001203420302

    Article  CAS  PubMed  Google Scholar 

  65. Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261–268. https://doi.org/10.1161/01.RES.0000136815.73623.BE

    Article  CAS  PubMed  Google Scholar 

  66. Zandstra TE, Nederend M, Jongbloed MRM, Kies P, Vliegen HW, Bouma BJ, Tops LF, Schalij MJ, Egorova AD (2021) Sacubitril/valsartan in the treatment of systemic right ventricular failure. Heart 107:1725–1730. https://doi.org/10.1136/heartjnl-2020-318074

    Article  CAS  PubMed  Google Scholar 

  67. Zhou B, Tian R (2018) Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Investig 128:3716–3726. https://doi.org/10.1172/JCI120849

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950. https://doi.org/10.1152/physrev.00026.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the technical assistance of B. Reuter and S. Fiedler.

Funding

This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Projektnummer 268555672-SFB 1213, project B03 to S.R., M.L.S., M.K. and project B05 to R.S.) and by the FCMH Flexifunds to the Mitochondrial Network consortium (to S.R.). Work in the laboratory of M.K. is further supported by the IMPRS program of the Max Planck Society and the Excellence Cluster Cardio-Pulmonary Institute (EXC 2026: Cardio-Pulmonary Institute [CPI], project 390649896) and the DZL/UGMLC/ILH program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Susanne Rohrbach, Michael Kracht, Bernd Niemann; Methodology: Bernd Niemann; Formal analysis and investigation: Ling Li, Fabienne Knapp, Liane M. Jurida, Sebastian Werner, Jan Philipp Schneider, Christian Mühlfeld, Xiaoke Yin, Nicole Molenda, Michael Kracht; Writing—original draft preparation: Susanne Rohrbach; Writing—review and editing: Rainer Schulz, Michael Kracht, Jan Philipp Schneider, Christian Mühlfeld; Funding acquisition: M. Lienhard Schmitz, Rainer Schulz, Michael Kracht, Susanne Rohrbach; Resources: Christian Mühlfeld; Manuel Mayr; Supervision: Michael Kracht, Susanne Rohrbach, Bernd Niemann; Visualization: Michael Kracht, Bernd Niemann, Susanne Rohrbach.

Corresponding author

Correspondence to Susanne Rohrbach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experimental protocols were approved by the regional authorities and ethics committees for animal research (RP Giessen) and conformed to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes. The experiments were registered under the number G14-2017. We followed the ARRIVE guidelines 2.0 [37]. The manuscript does not contain clinical studies or patient data.

Additional information

This article is part of the special issue “Mitochondria at the heart of cardioprotection”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2957 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Niemann, B., Knapp, F. et al. Comparison of the stage-dependent mitochondrial changes in response to pressure overload between the diseased right and left ventricle in the rat. Basic Res Cardiol (2024). https://doi.org/10.1007/s00395-024-01051-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-024-01051-3

Keywords

Navigation