Skip to main content

Advertisement

Log in

Leukocyte iNOS is required for inflammation and pathological remodeling in ischemic heart failure

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In the failing heart, iNOS is expressed by both macrophages and cardiomyocytes. We hypothesized that inflammatory cell-localized iNOS exacerbates left ventricular (LV) remodeling. Wild-type (WT) C57BL/6 mice underwent total body irradiation and reconstitution with bone marrow from iNOS−/− mice (iNOS−/−c) or WT mice (WTc). Chimeric mice underwent coronary ligation to induce large infarction and ischemic heart failure (HF), or sham surgery. After 28 days, as compared with WTc sham mice, WTc HF mice exhibited significant (p < 0.05) mortality, LV dysfunction, hypertrophy, fibrosis, oxidative/nitrative stress, inflammatory activation, and iNOS upregulation. These mice also exhibited a ~twofold increase in circulating Ly6Chi pro-inflammatory monocytes, and ~sevenfold higher cardiac M1 macrophages, which were primarily CCR2 cells. In contrast, as compared with WTc HF mice, iNOS−/−c HF mice exhibited significantly improved survival, LV function, hypertrophy, fibrosis, oxidative/nitrative stress, and inflammatory activation, without differences in overall cardiac iNOS expression. Moreover, iNOS−/−c HF mice exhibited lower circulating Ly6Chi monocytes, and augmented cardiac M2 macrophages, but with greater infiltrating monocyte-derived CCR2+ macrophages vs. WTc HF mice. Lastly, upon cell-to-cell contact with naïve cardiomyocytes, peritoneal macrophages from WT HF mice depressed contraction, and augmented cardiomyocyte oxygen free radicals and peroxynitrite. These effects were not observed upon contact with macrophages from iNOS−/− HF mice. We conclude that leukocyte iNOS is obligatory for local and systemic inflammatory activation and cardiac remodeling in ischemic HF. Activated macrophages in HF may directly induce cardiomyocyte contractile dysfunction and oxidant stress upon cell-to-cell contact; this juxtacrine response requires macrophage-localized iNOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abegunewardene N, Schmidt KH, Vosseler M, Kreitner KF, Schreiber LM, Lehr HA, Gori T, Munzel T, Horstick G (2011) Gene therapy with iNOS enhances regional contractility and reduces delayed contrast enhancement in a model of postischemic congestive heart failure. Clin Hemorheol Microcirc 49:271–278. doi:10.3233/CH-2011-1477

    PubMed  Google Scholar 

  2. Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90:464–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bolli R (2001) Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 33:1897–1918. doi:10.1006/jmcc.2001.1462

    Article  CAS  PubMed  Google Scholar 

  4. Colson YL, Xu H, Huang Y, Ildstad ST (2004) Mixed xenogeneic chimerism induces donor-specific humoral and cellular immune tolerance for cardiac xenografts. J Immunol 173:5827–5834

    Article  CAS  PubMed  Google Scholar 

  5. Comini L, Bachetti T, Agnoletti L, Gaia G, Curello S, Milanesi B, Volterrani M, Parrinello G, Ceconi C, Giordano A, Corti A, Ferrari R (1999) Induction of functional inducible nitric oxide synthase in monocytes of patients with congestive heart failure. Link with tumour necrosis factor-alpha. Eur Heart J 20:1503–1513. doi:10.1053/euhj.1999.1580

    Article  CAS  PubMed  Google Scholar 

  6. Conraads VM, Bosmans JM, Schuerwegh AJ, Goovaerts I, De Clerck LS, Stevens WJ, Bridts CH, Vrints CJ (2005) Intracellular monocyte cytokine production and CD14 expression are up-regulated in severe vs mild chronic heart failure. J Heart Lung Transplant 24:854–859. doi:10.1016/j.healun.2004.04.017

    Article  PubMed  Google Scholar 

  7. de Belder AJ, Radomski MW, Why HJ, Richardson PJ, Martin JF (1995) Myocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not in ischaemic or valvar heart disease. Br Heart J 74:426–430

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dias FA, Urboniene D, Yuzhakova MA, Biesiadecki BJ, Pena JR, Goldspink PH, Geenen DL, Wolska BM (2010) Ablation of iNOS delays cardiac contractile dysfunction in chronic hypertension. Front Biosci (Elite Ed) 2:312–324

    Google Scholar 

  9. Drexler H, Kastner S, Strobel A, Studer R, Brodde OE, Hasenfuss G (1998) Expression, activity and functional significance of inducible nitric oxide synthase in the failing human heart. J Am Coll Cardiol 32:955–963

    Article  CAS  PubMed  Google Scholar 

  10. Feng Q, Lu X, Jones DL, Shen J, Arnold JM (2001) Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 104:700–704

    Article  CAS  PubMed  Google Scholar 

  11. Fukuchi M, Hussain SN, Giaid A (1998) Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure: their relation to lesion site and beta-adrenergic receptor therapy. Circulation 98:132–139

    Article  CAS  PubMed  Google Scholar 

  12. Garlie JB, Hamid T, Gu Y, Ismahil MA, Chandrasekar B, Prabhu SD (2011) Tumor necrosis factor receptor 2 signaling limits beta-adrenergic receptor-mediated cardiac hypertrophy in vivo. Basic Res Cardiol 106:1193–1205. doi:10.1007/s00395-011-0196-6

    Article  CAS  PubMed  Google Scholar 

  13. Gilson WD, Epstein FH, Yang Z, Xu Y, Prasad KM, Toufektsian MC, Laubach VE, French BA (2007) Borderzone contractile dysfunction is transiently attenuated and left ventricular structural remodeling is markedly reduced following reperfused myocardial infarction in inducible nitric oxide synthase knockout mice. J Am Coll Cardiol 50:1799–1807. doi:10.1016/j.jacc.2007.07.047

    Article  CAS  PubMed  Google Scholar 

  14. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R (1999) The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA 96:11507–11512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan YT, Prabhu SD (2009) Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 119:1386–1397. doi:10.1161/CIRCULATIONAHA.108.802918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamid T, Guo SZ, Kingery JR, Xiang X, Dawn B, Prabhu SD (2011) Cardiomyocyte NF-kappaB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure. Cardiovasc Res 89:129–138. doi:10.1093/cvr/cvq274

    Article  CAS  PubMed  Google Scholar 

  17. Hare JM, Givertz MM, Creager MA, Colucci WS (1998) Increased sensitivity to nitric oxide synthase inhibition in patients with heart failure: potentiation of beta-adrenergic inotropic responsiveness. Circulation 97:161–166

    Article  CAS  PubMed  Google Scholar 

  18. Heger J, Godecke A, Flogel U, Merx MW, Molojavyi A, Kuhn-Velten WN, Schrader J (2002) Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res 90:93–99

    Article  CAS  PubMed  Google Scholar 

  19. Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, Sun Y, Da Silva N, Panizzi P, van der Laan AM, Swirski FK, Weissleder R, Nahrendorf M (2014) Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res 115:284–295. doi:10.1161/CIRCRESAHA.115.303567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127. doi:10.1161/CIRCRESAHA.108.186015

    Article  CAS  PubMed  Google Scholar 

  21. Heusch P, Aker S, Boengler K, Deindl E, van de Sand A, Klein K, Rassaf T, Konietzka I, Sewell A, Menazza S, Canton M, Heusch G, Di Lisa F, Schulz R (2010) Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation. Am J Physiol Heart Circ Physiol 299:H446–H453. doi:10.1152/ajpheart.01034.2009

    Article  CAS  PubMed  Google Scholar 

  22. Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD (2014) Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ Res 114:266–282. doi:10.1161/CIRCRESAHA.113.301720

    Article  CAS  PubMed  Google Scholar 

  23. Jones SP, Greer JJ, Ware PD, Yang J, Walsh K, Lefer DJ (2005) Deficiency of iNOS does not attenuate severe congestive heart failure in mice. Am J Physiol Heart Circ Physiol 288:H365–H370. doi:10.1152/ajpheart.00245.2004

    Article  CAS  PubMed  Google Scholar 

  24. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, Sena B, Chudnovskiy A, Panizzi P, Keliher E, Higgins JM, Libby P, Moskowitz MA, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M (2012) Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123–137. doi:10.1084/jem.20111009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Q, Guo Y, Xuan YT, Lowenstein CJ, Stevenson SC, Prabhu SD, Wu WJ, Zhu Y, Bolli R (2003) Gene therapy with inducible nitric oxide synthase protects against myocardial infarction via a cyclooxygenase-2-dependent mechanism. Circ Res 92:741–748. doi:10.1161/01.RES.0000065441.72685.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Libby P, Nahrendorf M, Swirski FK (2013) Monocyte heterogeneity in cardiovascular disease. Semin Immunopathol 35:553–562. doi:10.1007/s00281-013-0387-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu YH, Carretero OA, Cingolani OH, Liao TD, Sun Y, Xu J, Li LY, Pagano PJ, Yang JJ, Yang XP (2005) Role of inducible nitric oxide synthase in cardiac function and remodeling in mice with heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol 289:H2616–H2623. doi:10.1152/ajpheart.00546.2005

    Article  CAS  PubMed  Google Scholar 

  28. Luo J, Hill BG, Gu Y, Cai J, Srivastava S, Bhatnagar A, Prabhu SD (2007) Mechanisms of acrolein-induced myocardial dysfunction: implications for environmental and endogenous aldehyde exposure. Am J Physiol Heart Circ Physiol 293:H3673–H3684. doi:10.1152/ajpheart.00284.2007

    Article  CAS  PubMed  Google Scholar 

  29. Luo J, Xuan YT, Gu Y, Prabhu SD (2006) Prolonged oxidative stress inverts the cardiac force-frequency relation: role of altered calcium handling and myofilament calcium responsiveness. J Mol Cell Cardiol 40:64–75. doi:10.1016/j.yjmcc.2005.09.013

    Article  CAS  PubMed  Google Scholar 

  30. Luoma JS, Stralin P, Marklund SL, Hiltunen TP, Sarkioja T, Yla-Herttuala S (1998) Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol 18:157–167

    Article  CAS  PubMed  Google Scholar 

  31. Matsumura S, Iwanaga S, Mochizuki S, Okamoto H, Ogawa S, Okada Y (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest 115:599–609. doi:10.1172/JCI22304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mills CD (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32:463–488

    Article  CAS  PubMed  Google Scholar 

  33. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445. doi:10.1161/CIRCULATIONAHA.109.916346

    Article  PubMed  PubMed Central  Google Scholar 

  34. Patel B, Ismahil MA, Hamid T, Bansal SS, Prabhu SD (2017) Mononuclear phagocytes are dispensable for cardiac remodeling in established pressure-overload heart failure. PLoS One 12:e0170781. doi:10.1371/journal.pone.0170781

    Article  PubMed  PubMed Central  Google Scholar 

  35. Poon BY, Raharjo E, Patel KD, Tavener S, Kubes P (2003) Complexity of inducible nitric oxide synthase: cellular source determines benefit versus toxicity. Circulation 108:1107–1112. doi:10.1161/01.CIR.0000086321.04702.AC

    Article  CAS  PubMed  Google Scholar 

  36. Prabhu SD (2014) It takes two to tango: monocyte and macrophage duality in the infarcted heart. Circ Res 114:1558–1560. doi:10.1161/CIRCRESAHA.114.303933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prabhu SD (2004) Nitric oxide protects against pathological ventricular remodeling: reconsideration of the role of NO in the failing heart. Circ Res 94:1155–1157. doi:10.1161/01.RES.0000129569.07667.89

    Article  CAS  PubMed  Google Scholar 

  38. Prabhu SD, Chandrasekar B, Murray DR, Freeman GL (2000) beta-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 101:2103–2109

    Article  CAS  PubMed  Google Scholar 

  39. Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 119:91–112. doi:10.1161/CIRCRESAHA.116.303577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sager HB, Hulsmans M, Lavine KJ, Moreira MB, Heidt T, Courties G, Sun Y, Iwamoto Y, Tricot B, Khan OF, Dahlman JE, Borodovsky A, Fitzgerald K, Anderson DG, Weissleder R, Libby P, Swirski FK, Nahrendorf M (2016) Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circ Res 119:853–864. doi:10.1161/CIRCRESAHA.116.309001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sam F, Sawyer DB, Xie Z, Chang DL, Ngoy S, Brenner DA, Siwik DA, Singh K, Apstein CS, Colucci WS (2001) Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ Res 89:351–356

    Article  CAS  PubMed  Google Scholar 

  42. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. doi:10.1172/JCI59643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Speranza L, Franceschelli S, Riccioni G, Di Nicola M, Ruggeri B, Gallina S, Felaco M, Grilli A (2012) BNP and iNOS in decompensated chronic heart failure: a linear correlation. Front Biosci (Elite Ed) 4:1255–1262

    Article  Google Scholar 

  44. Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172:4410–4417

    Article  PubMed  Google Scholar 

  45. Takimoto Y, Aoyama T, Keyamura R, Shinoda E, Hattori R, Yui Y, Sasayama S (2000) Differential expression of three types of nitric oxide synthase in both infarcted and non-infarcted left ventricles after myocardial infarction in the rat. Int J Cardiol 76:135–145

    Article  CAS  PubMed  Google Scholar 

  46. Wang G, Hamid T, Keith RJ, Zhou G, Partridge CR, Xiang X, Kingery JR, Lewis RK, Li Q, Rokosh DG, Ford R, Spinale FG, Riggs DW, Srivastava S, Bhatnagar A, Bolli R, Prabhu SD (2010) Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation 121:1912–1925. doi:10.1161/CIRCULATIONAHA.109.905471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. West MB, Rokosh G, Obal D, Velayutham M, Xuan YT, Hill BG, Keith RJ, Schrader J, Guo Y, Conklin DJ, Prabhu SD, Zweier JL, Bolli R, Bhatnagar A (2008) Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation 118:1970–1978. doi:10.1161/CIRCULATIONAHA.108.791533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou G, Li X, Hein DW, Xiang X, Marshall JP, Prabhu SD, Cai L (2008) Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J Am Coll Cardiol 52:655–666. doi:10.1016/j.jacc.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  49. Zingarelli B, Hake PW, Yang Z, O’Connor M, Denenberg A, Wong HR (2002) Absence of inducible nitric oxide synthase modulates early reperfusion-induced NF-kappaB and AP-1 activation and enhances myocardial damage. FASEB J 16:327–342. doi:10.1096/fj.01-0533com

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Predoctoral Fellowship from the American Heart Association—Ohio Valley Affiliate 0615167B (to J.R.K.), VA Merit Award I01BX002706 (to S.D.P.), and National Institutes of Health Grants HL099014 and HL125735 (to S.D.P.); HL083320, HL094419, and HL131467 (to S.P.J.); GM103492 and HL078825 (to S.D.P. and S.P.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanth D. Prabhu.

Ethics declarations

Conflict of interest

None declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingery, J.R., Hamid, T., Lewis, R.K. et al. Leukocyte iNOS is required for inflammation and pathological remodeling in ischemic heart failure. Basic Res Cardiol 112, 19 (2017). https://doi.org/10.1007/s00395-017-0609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-017-0609-2

Keywords

Navigation