Skip to main content

Advertisement

Log in

Hydrogen sulfide mediates the cardioprotective effects of gene therapy with PKG-Iα

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Cyclic GMP-dependent protein kinase (PKG) is a serine-threonine kinase that mediates the cardioprotective effect of ischemic and pharmacologic preconditioning. Since hydrogen sulfide (H2S) has been implicated in mediating the cardioprotective effects of the cGMP modulators tadalafil and cinaciguat, we tested the hypothesis that myocardial gene therapy with PKG exerts cardioprotection against ischemia/reperfusion (I/R) injury through a mechanism involving H2S. Adult rat cardiomyocytes were infected with adenoviral vector encoding PKGIα or inactive mutant PKGIαK390A (K390A) for 24 h. Necrosis and apoptosis (n = 6/group) were determined after 90 min of simulated ischemia and 1 or 18 h of reoxygenation, respectively. To study the effect of PKGIα in vivo, mice received intramyocardial injections of adenoviral PKGIα or K390A. Four days later, the hearts were subjected to 30 min of ischemia followed by reperfusion for 24 h. The inhibitor of H2S-producing enzyme, cystathionine-γ-lyase (CSE), dl-propargylglycine (PAG, 50 mg/kg, ip) was given 30 min before ischemia. PKGIα overexpression induced CSE expression, whereas cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase expression was not changed. PKGIα overexpression increased H2S in the heart and cardiomyocytes in relation to control and PKGIαK390A. Moreover, PAG abolished protection with PKGIα in vitro by increasing necrosis (35.2 ± 1.7 %, P < 0.05) and apoptosis (23.5 ± 1.8 %, P < 0.05) as compared to PKGIα-overexpressing cells (necrosis: 17.2 ± 0.9 % and apoptosis: 13.2 ± 0.8 %). In vivo, PKGIα overexpression reduced infarct size and preserved left ventricular fractional shortening as compared with K390A (P < 0.05) and PAG abolished the cardioprotective effect of PKGIα. The protective effect of myocardial gene therapy with PKGIα against I/R injury is mediated through a mechanism involving H2S signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altaany Z, Moccia F, Munaron L, Mancardi D, Wang R (2014) Hydrogen sulfide and endothelial dysfunction: relationship with nitric oxide. Curr Med Chem 21:3646–3661. doi:10.2174/0929867321666140706142930

    Article  CAS  PubMed  Google Scholar 

  2. Bibli SI, Yang G, Zhou Z, Wang R, Topouzis S, Papapetropoulos A (2015) Role of cGMP in hydrogen sulfide signaling. Nitric Oxide 46:7–13. doi:10.1016/j.niox.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Bice JS, Baxter GF (2014) Postconditioning signaling in the heart: mechanisms and translatability. Br J Pharmacol. doi:10.1111/bph.12976

    PubMed  Google Scholar 

  4. Burgoyne JR, Prysyazhna O, Rudyk O, Eaton P (2012) cGMP-dependent activation of protein kinase G precludes disulfide activation: implications for blood pressure control. Hypertension 60:1301–1308. doi:10.1161/HYPERTENSIONAHA.112.198754

    Article  CAS  PubMed  Google Scholar 

  5. Burgoyne JR, Oka S, Ale-Agha N, Eaton P (2013) Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system. Antioxid Redox Signal 18:1042–1052. doi:10.1089/ars.2012.4817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Burley DS, Ferdinandy P, Baxter GF (2007) Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br J Pharmacol 152:855–869. doi:10.1038/sj.bjp.0707453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW, Ramachandran A, Lefer DJ (2010) Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 122:11–19. doi:10.1161/CIRCULATIONAHA.109.920991

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cen B, Deguchi A, Weinstein IB (2008) Activation of protein kinase G Increases the expression of p21CIP1, p27KIP1, and histidine triad protein 1 through Sp1. Cancer Res 68:5355–5362. doi:10.1158/0008-5472.CAN-07-6869

    Article  CAS  PubMed  Google Scholar 

  9. Chau VQ, Salloum FN, Hoke NN, Abbate A, Kukreja RC (2011) Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am J Physiol Heart Circ Physiol 300:H2272–H2279. doi:10.1152/ajpheart.00654.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cohen MV, Downey JM (2014) Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br J Pharmacol. doi:10.1111/bph.12903

    PubMed Central  Google Scholar 

  11. D’Souza SP, Yellon DM, Martin C, Schulz R, Heusch G, Onody A, Ferdinandy P, Baxter GF (2003) B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol Heart Circ Physiol 284:H1592–H1600. doi:10.1152/ajpheart.00902.2002

    Article  PubMed  Google Scholar 

  12. Das A, Salloum FN, Xi L, Rao YJ, Kukreja RC (2009) ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. Am J Physiol Heart Circ Physiol 296:H1236–H1243. doi:10.1152/ajpheart.00100.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Das A, Salloum FN, Xi L, Rao YJ, Kukreja RC (2009) Role of ERK1/2 phosphorylation in sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. Am J Physiol Heart Circ Physiol 296:H1236–H1243. doi:10.1152/ajpheart.00100.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Das A, Smolenski A, Lohmann SM, Kukreja RC (2006) Cyclic GMP-dependent protein kinase Ialpha attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J Biol Chem 281:38644–38652. doi:10.1074/jbc.M606142200

    Article  CAS  PubMed  Google Scholar 

  15. Das A, Xi L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis: essential role of nitric oxide signaling. J Biol Chem 280:12944–12955. doi:10.1074/jbc.M404706200

    Article  CAS  PubMed  Google Scholar 

  16. Das A, Xi L, Kukreja RC (2008) Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. J Biol Chem 283:29572–29585. doi:10.1074/jbc.M801547200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104:15560–15565. doi:10.1073/pnas.0705891104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Francis SH, Corbin JD (1999) Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci 36:275–328. doi:10.1080/10408369991239213

    Article  CAS  PubMed  Google Scholar 

  19. Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004) H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313:362–368. doi:10.1016/j.bbrc.2003.11.130

    Article  CAS  PubMed  Google Scholar 

  20. Gotz KR, Sprenger JU, Perera RK, Steinbrecher JH, Lehnart SE, Kuhn M, Gorelik J, Balligand JL, Nikolaev VO (2014) Transgenic mice for real-time visualization of cGMP in intact adult cardiomyocytes. Circ Res 114:1235–1245. doi:10.1161/CIRCRESAHA.114.302437

    Article  PubMed  Google Scholar 

  21. Han J, Kim N, Kim E, Ho WE, Earm YE (2001) Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem 276:22140–22147. doi:10.1074/jbc.M010103200

    Article  CAS  PubMed  Google Scholar 

  22. Hofmann F, Ammendola A, Schlossmann J (2000) Rising behind NO: cGMP-dependent protein kinases. J Cell Sci 113:1671–1676

    CAS  PubMed  Google Scholar 

  23. Hou J, Kang YJ (2012) Regression of pathological cardiac hypertrophy: signaling pathways and therapeutic targets. Pharmacol Ther 135:337–354. doi:10.1016/j.pharmthera.2012.06.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequesnces, promoter activity, tissue distribution and developmental expression. Biochem J 381:113–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Keilbach A, Ruth P, Hofmann F (1992) Detection of cGMP dependent protein kinase isozymes by specific antibodies. Eur J Biochem 208:467–473. doi:10.1111/j.1432-1033.1992.tb17209.x

    Article  CAS  PubMed  Google Scholar 

  26. King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, Bradley JM, Islam KN, Calvert JW, Tao YX, Dugas TR, Kelley EE, Elrod JW, Huang PL, Wang R, Lefer DJ (2014) Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci USA 111:3182–3187. doi:10.1073/pnas.1321871111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G Sr, Gojon G Jr, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ (2013) H2S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127:1116–1127. doi:10.1161/CIRCULATIONAHA.112.000855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kukreja RC (2012) Phosphodiesterase-5 and retargeting of subcellular cGMP signaling during pathological hypertrophy. Circulation 126:916–919. doi:10.1161/CIRCULATIONAHA.112.124966

    Article  PubMed  Google Scholar 

  29. Kukreja RC, Salloum F, Das A, Ockaili R, Yin C, Bremer YA, Fisher PW, Wittkamp M, Hawkins J, Chou E, Kukreja AK, Wang X, Marwaha V, Xi L (2005) Pharmacological preconditioning with sildenafil: basic mechanisms and clinical implications. Vascul Pharmacol 42:219–232. doi:10.1016/j.vph.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  30. Kukreja RC, Salloum FN, Das A (2012) Cyclic guanosine monophosphate signaling and phosphodiesterase-5 inhibitors in cardioprotection. J Am Coll Cardiol 59:1921–1927. doi:10.1016/j.jacc.2011.09.086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lukowski R, Rybalkin SD, Loga F, Leiss V, Beavo JA, Hofmann F (2010) Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proc Natl Acad Sci USA 107:5646–5651. doi:10.1073/pnas.1001360107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Methner C, Lukowski R, Grube K, Loga F, Smith RA, Murphy MP, Hofmann F, Krieg T (2013) Protection through postconditioning or a mitochondria-targeted S-nitrosothiol is unaffected by cardiomyocyte-selective ablation of protein kinase G. Basic Res Cardiol 108:337. doi:10.1007/s00395-013-0337-1

    Article  PubMed  Google Scholar 

  33. Ockaili R, Salloum F, Hawkins J, Kukreja RC (2002) Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am J Physiol Heart Circ Physiol 283:H1263–H1269. doi:10.1152/ajpheart.00324.2002

    Article  CAS  PubMed  Google Scholar 

  34. Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271. doi:10.1016/j.jacc.2013.02.092

    Article  PubMed  Google Scholar 

  35. Polhemus DJ, Lefer DJ (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114:730–737. doi:10.1161/CIRCRESAHA.114.300505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJ (2006) Free radical biology and medicine: it’s a gas, man! Am J Physiol Regul Integr Comp Physiol 291:R491–R511. doi:10.1152/ajpregu.00614.2005

    Article  CAS  PubMed  Google Scholar 

  37. Qin Q, Yang XM, Cui L, Critz SD, Cohen MV, Browner NC, Lincoln TM, Downey JM (2004) Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism. Am J Physiol Heart Circ Physiol 287:H712–H718. doi:10.1152/ajpheart.00954.2003

    Article  CAS  PubMed  Google Scholar 

  38. Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610. doi:10.1161/CIRCRESAHA.114.303822

    Article  CAS  PubMed  Google Scholar 

  39. Salloum FN (2015) Hydrogen sulfide and cardioprotection—mechanistic insights and clinical translatability. Pharmacol Ther. doi:10.1016/j.pharmthera.2015.04.004

    Google Scholar 

  40. Salloum FN, Abbate A, Das A, Houser J, Mudrick CA, Qureshi IZ, Hoke NN, Roy SK, Brown WR, Prabhakar S, Kukreja RC (2008) Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol 294:H1398–H1406. doi:10.1152/ajpheart.91438.2007

    Article  CAS  PubMed  Google Scholar 

  41. Salloum FN, Chau VQ, Hoke NN, Abbate A, Varma A, Ockaili RA, Toldo S, Kukreja RC (2009) Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase G dependent generation of hydrogen sulfide. Circulation 120:S31–S36. doi:10.1161/CIRCULATIONAHA.108.843979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Salloum FN, Das A, Samidurai A, Hoke NN, Chau VQ, Ockaili RA, Stasch JP, Kukreja RC (2012) Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide. Am J Physiol Heart Circ Physiol 302:H1347–H1354. doi:10.1152/ajpheart.00544.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Salloum FN, Ockaili R, Wittkamp M, Marwaha VR, Kukreja RC (2006) Vardenafil: a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial KATP channels in rabbits. J Mol Cell Cardiol 40:405–411. doi:10.1016/j.yjmcc.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  44. Stubbert D, Prysyazhna O, Rudyk O, Scotcher J, Burgoyne JR, Eaton P (2014) Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide. Hypertension 64:1344–1351. doi:10.1161/HYPERTENSIONAHA.114.04281

    Article  CAS  PubMed  Google Scholar 

  45. Su YW, Liang C, Jin HF, Tang XY, Han W, Chai LJ, Zhang CY, Geng B, Tang CS, Du JB (2009) Hydrogen sulfide regulates cardiac function and structure in adriamycin-induced cardiomyopathy. Circ J 73:741–749

    Article  CAS  PubMed  Google Scholar 

  46. Toldo S, Das A, Mezzaroma E, Chau VQ, Marchetti C, Durrant D, Samidurai A, Van Tassell BW, Yin C, Ockaili RA, Vigneshwar N, Mukhopadhyay ND, Kukreja RC, Abbate A, Salloum FN (2014) Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovasc Genet 7:311–320. doi:10.1161/CIRCGENETICS.113.000381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Varma A, Das A, Hoke NN, Durrant DE, Salloum FN, Kukreja RC (2012) Anti-inflammatory and cardioprotective effects of tadalafil in diabetic mice. PLoS One 7:e45243. doi:10.1371/journal.pone.0045243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wollert KC, Fiedler B, Gambaryan S, Smolenski A, Heineke J, Butt E, Trautwein C, Lohmann SM, Drexler H (2002) Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension 39:87–92

    Article  CAS  PubMed  Google Scholar 

  49. Yang G, Pei Y, Teng H, Cao Q, Wang R (2011) Specificity protein-1 as a critical regulator of human cyctathionine gamma-lyase in smooth muscle cells. J Biol Chem 286:26450–26460. doi:10.1074/jbc.M111.266643

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Yong QC, Lee SW, Foo CS, Neo KL, Chen X, Bian JS (2008) Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Physiol Heart Circ Physiol 295:H1330–H1340. doi:10.1152/ajpheart.00244.2008

    Article  CAS  PubMed  Google Scholar 

  51. Yong QC, Pan TT, Hu LF, Bian JS (2008) Negative regulation of beta-adrenergic function by hydrogen sulphide in the rat hearts. J Mol Cell Cardiol 44:701–710. doi:10.1016/j.yjmcc.2008.01.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jun He, M.S. and Dr. Nitai Mukhopadhyay for performing the biostatistical analyses for this study. This study was supported in part by a grant from the American Heart Association (BGIA 0765273U) to AD, grants from the National Institutes of Health (HL51045, HL59469, and HL79424) to RCK, and grants from the American Heart Association (10SDG3770011 and 14GRNT20010003) and the Virginia Commonwealth University Presidential Research Quest Fund to FNS.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi N. Salloum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Samidurai, A., Hoke, N.N. et al. Hydrogen sulfide mediates the cardioprotective effects of gene therapy with PKG-Iα. Basic Res Cardiol 110, 42 (2015). https://doi.org/10.1007/s00395-015-0500-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0500-y

Keywords

Navigation