Skip to main content

Advertisement

Log in

Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Interleukin-6 (IL-6) is a multifunctional cytokine that orchestrates the immune response to a wide variety of pathophysiologic challenges but also contributes to tissue homeostasis. Furthermore, IL-6 is elevated in patients with acute myocardial infarction. Hyaluronan (HA) is an extracellular carbohydrate that has been implicated in wound healing and accumulates after acute myocardial infarction (AMI). Aim of this study was to investigate the involvement of IL-6 in the regulation of the HA-matrix in the early phase of infarct healing. In the present study, we show by the use of a blocking anti-IL-6 antibody, that endogenous IL-6 rapidly but transiently increased HA-synthase (HAS) 1 and 2 expression resulting in the formation of a HA-rich matrix acutely after AMI in mice. In vitro, IL-6 induced HAS1 and 2 via STAT3 phosphorylation in cardiac fibroblasts (CF) and supported a myofibroblastic phenotype in a HA-dependent manner. Furthermore, CCL5 and MCP1 expression were dependent on IL-6, HA-synthesis and the HA-receptor CD44 as shown in cultured CF derived from CD44 knockout mice. In vivo after AMI, blocking IL-6 decreased HA-matrix formation in the peri-infarct region and alpha-smooth muscle actin-positive myofibroblasts. Blocking IL-6 also reduced neutrophil infiltration in infarcted left ventricles. Moreover, treatment with the blocking IL-6 antibody reduced cardiac ejection fraction and increased infarct size 3 weeks after AMI. These findings support a functionally important role for IL-6 in CF by transiently inducing a HA-rich matrix that in turn promotes a myofibroblastic phenotype and inflammatory responses, and ultimately establishes a cardioprotective program after AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HA:

Hyaluronan

HAS:

Hyaluronan synthase

HAbP:

Hyaluronan-binding protein

αSMA:

Alpha-smooth muscle actin

4-MU:

Soluble IL-6 receptor (sIL-6R), 4-methylumbelliferone

CF:

Cardiac fibroblasts

LAD:

Left anterior descending coronary artery

ECM:

Extracellular matrix

EF:

Ejection fraction

STEMI:

ST-segment elevation myocardial infarction

References

  1. Ammirati E, Cannistraci CV, Cristell NA, Vecchio V, Palini AG, Tornvall P, Paganoni AM, Miendlarzewska EA, Sangalli LM, Monello A, Pernow J, Bjornstedt Bennermo M, Marenzi G, Hu D, Uren NG, Cianflone D, Ravasi T, Manfredi AA, Maseri A (2012) Identification and predictive value of interleukin-6+ interleukin-10+ and interleukin-6- interleukin-10+ cytokine patterns in ST-elevation acute myocardial infarction. Circ Res 111:1336–1348. doi:10.1161/CIRCRESAHA.111.262477

    Article  CAS  PubMed  Google Scholar 

  2. Anderson DR, Poterucha JT, Mikuls TR, Duryee MJ, Garvin RP, Klassen LW, Shurmur SW, Thiele GM (2013) IL-6 and its receptors in coronary artery disease and acute myocardial infarction. Cytokine 62:395–400. doi:10.1016/j.cyto.2013.03.020

    Article  CAS  PubMed  Google Scholar 

  3. Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120:172–185. doi:10.1016/j.pharmthera.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  4. Bonner F, Borg N, Burghoff S, Schrader J (2012) Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLoS One 7:e34730. doi:10.1371/journal.pone.0034730

    Article  PubMed Central  PubMed  Google Scholar 

  5. Buyukkaya E, Poyraz F, Karakas MF, Kurt M, Akcay AB, Akpinar I, Motor S, Turak O, Ozturk OH, Sen N, Akpek M, Kaya MG, Gibson CM (2013) Usefulness of monocyte chemoattractant protein-1 to predict no-reflow and three-year mortality in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol 112:187–193. doi:10.1016/j.amjcard.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  6. Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360. doi:10.1172/JCI10272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, Michael LH, Rollins BJ, Entman ML, Frangogiannis NG (2005) CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res 96:881–889. doi:10.1161/01.RES.0000163017.13772.3a

    Article  CAS  PubMed  Google Scholar 

  8. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511. doi:10.1016/j.yjmcc.2009.07.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Empana JP, Jouven X, Canoui-Poitrine F, Luc G, Tafflet M, Haas B, Arveiler D, Ferrieres J, Ruidavets JB, Montaye M, Yarnell J, Morange P, Kee F, Evans A, Amouyel P, Ducimetiere P (2010) C-reactive protein, interleukin 6, fibrinogen and risk of sudden death in European middle-aged men: the PRIME study. Arterioscler Thromb Vasc Biol 30:2047–2052. doi:10.1161/ATVBAHA.110.208785

    Article  CAS  PubMed  Google Scholar 

  10. Fischer M, Goldschmitt J, Peschel C, Brakenhoff JP, Kallen KJ, Wollmer A, Grotzinger J, Rose-John S (1997) I. A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat Biotechnol 15:142–145. doi:10.1038/nbt0297-142

    Article  CAS  PubMed  Google Scholar 

  11. Fuchs M, Hilfiker A, Kaminski K, Hilfiker-Kleiner D, Guener Z, Klein G, Podewski E, Schieffer B, Rose-John S, Drexler H (2003) Role of interleukin-6 for LV remodeling and survival after experimental myocardial infarction. FASEB J 17:2118–2120. doi:10.1096/fj.03-0331fje

    CAS  PubMed  Google Scholar 

  12. Hilfiker-Kleiner D, Shukla P, Klein G, Schaefer A, Stapel B, Hoch M, Muller W, Scherr M, Theilmeier G, Ernst M, Hilfiker A, Drexler H (2010) Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation 122:145–155. doi:10.1161/CIRCULATIONAHA.109.933127

    Article  CAS  PubMed  Google Scholar 

  13. Hoge J, Yan I, Janner N, Schumacher V, Chalaris A, Steinmetz OM, Engel DR, Scheller J, Rose-John S, Mittrucker HW (2013) IL-6 controls the innate immune response against Listeria monocytogenes via classical IL-6 signaling. J Immunol 190:703–711. doi:10.4049/jimmunol.1201044

    Article  CAS  PubMed  Google Scholar 

  14. Huebener P, Abou-Khamis T, Zymek P, Bujak M, Ying X, Chatila K, Haudek S, Thakker G, Frangogiannis NG (2008) CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol 180:2625–2633

    Article  CAS  PubMed  Google Scholar 

  15. Jostock T, Mullberg J, Ozbek S, Atreya R, Blinn G, Voltz N, Fischer M, Neurath MF, Rose-John S (2001) Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur J Biochem 268:160–167

    Article  CAS  PubMed  Google Scholar 

  16. Kobara M, Noda K, Kitamura M, Okamoto A, Shiraishi T, Toba H, Matsubara H, Nakata T (2010) Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovasc Res 87:424–430. doi:10.1093/cvr/cvq078

    Article  CAS  PubMed  Google Scholar 

  17. Liehn EA, Merx MW, Postea O, Becher S, Djalali-Talab Y, Shagdarsuren E, Kelm M, Zernecke A, Weber C (2008) Ccr1 deficiency reduces inflammatory remodelling and preserves left ventricular function after myocardial infarction. J Cell Mol Med 12:496–506. doi:10.1111/j.1582-4934.2007.00194.x

    Article  CAS  PubMed  Google Scholar 

  18. Lindmark E, Diderholm E, Wallentin L, Siegbahn A (2001) Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 286:2107–2113

    Article  CAS  PubMed  Google Scholar 

  19. Lindner D, Zietsch C, Tank J, Sossalla S, Fluschnik N, Hinrichs S, Maier L, Poller W, Blankenberg S, Schultheiss HP, Tschope C, Westermann D (2014) Cardiac fibroblasts support cardiac inflammation in heart failure. Basic Res Cardiol 109:428. doi:10.1007/s00395-014-0428-7

    Article  PubMed  Google Scholar 

  20. Malchow S, Thaiss W, Janner N, Waetzig GH, Gewiese-Rabsch J, Garbers C, Yamamoto K, Rose-John S, Scheller J (2011) Essential role of neutrophil mobilization in concanavalin A-induced hepatitis is based on classic IL-6 signaling but not on IL-6 trans-signaling. Biochim Biophys Acta 1812:290–301. doi:10.1016/j.bbadis.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  21. Melchior-Becker A, Dai G, Ding Z, Schafer L, Schrader J, Young MF, Fischer JW (2011) Deficiency of biglycan causes cardiac fibroblasts to differentiate into a myofibroblast phenotype. J Biol Chem 286:17365–17375. doi:10.1074/jbc.M110.192682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Melendez GC, McLarty JL, Levick SP, Du Y, Janicki JS, Brower GL (2010) Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56:225–231. doi:10.1161/HYPERTENSIONAHA.109.148635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Merx MW, Gorressen S, van de Sandt AM, Cortese-Krott MM, Ohlig J, Stern M, Rassaf T, Godecke A, Gladwin MT, Kelm M (2014) Depletion of circulating blood NOS3 increases severity of myocardial infarction and left ventricular dysfunction. Basic Res Cardiol 109:398. doi:10.1007/s00395-013-0398-1

    Article  PubMed Central  PubMed  Google Scholar 

  24. Midgley AC, Rogers M, Hallett MB, Clayton A, Bowen T, Phillips AO, Steadman R (2013) Transforming growth factor-beta1 (TGF-beta1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 288:14824–14838. doi:10.1074/jbc.M113.451336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nagy N, Freudenberger T, Melchior-Becker A, Rock K, Ter Braak M, Jastrow H, Kinzig M, Lucke S, Suvorava T, Kojda G, Weber AA, Sorgel F, Levkau B, Ergun S, Fischer JW (2010) Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis. Circulation 122:2313–2322. doi:10.1161/CIRCULATIONAHA.110.972653

    Article  CAS  PubMed  Google Scholar 

  26. Negoro S, Kunisada K, Tone E, Funamoto M, Oh H, Kishimoto T, Yamauchi-Takihara K (2000) Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res 47:797–805

    Article  CAS  PubMed  Google Scholar 

  27. Petrey AC, de la Motte CA (2014) Hyaluronan, a crucial regulator of inflammation. Front Immunol 5:101. doi:10.3389/fimmu.2014.00101

    Article  PubMed Central  PubMed  Google Scholar 

  28. Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610. doi:10.1161/CIRCRESAHA.114.303822

    Article  CAS  PubMed  Google Scholar 

  29. Rock K, Meusch M, Fuchs N, Tigges J, Zipper P, Fritsche E, Krutmann J, Homey B, Reifenberger J, Fischer JW (2012) Estradiol protects dermal hyaluronan/versican matrix during photoaging by release of epidermal growth factor from keratinocytes. J Biol Chem 287:20056–20069. doi:10.1074/jbc.M112.353151

    Article  PubMed Central  PubMed  Google Scholar 

  30. Savvatis K, Pappritz K, Becher PM, Lindner D, Zietsch C, Volk HD, Westermann D, Schultheiss HP, Tschope C (2014) Interleukin-23 deficiency leads to impaired wound healing and adverse prognosis after myocardial infarction. Circ Heart fail 7:161–171. doi:10.1161/CIRCHEARTFAILURE.113.000604

    Article  CAS  PubMed  Google Scholar 

  31. Scheller J, Garbers C, Rose-John S (2014) Interleukin-6: from basic biology to selective blockade of pro-inflammatory activities. Semin Immunol 26:2–12. doi:10.1016/j.smim.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  32. Theroux P, Armstrong PW, Mahaffey KW, Hochman JS, Malloy KJ, Rollins S, Nicolau JC, Lavoie J, Luong TM, Burchenal J, Granger CB (2005) Prognostic significance of blood markers of inflammation in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab, a C5 inhibitor: a substudy of the COMMA trial. Eur Heart J 26:1964–1970. doi:10.1093/eurheartj/ehi292

    Article  PubMed  Google Scholar 

  33. Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V, Seluanov A (2013) High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499:346–349. doi:10.1038/nature12234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30–37. doi:10.1038/nrcardio.2009.199

    Article  PubMed  Google Scholar 

  35. Van Linthout S, Miteva K, Tschope C (2014) Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res 102:258–269. doi:10.1093/cvr/cvu062

    Article  PubMed  Google Scholar 

  36. Vernon RB, Gooden MD (2002) An improved method for the collagen gel contraction assay. In Vitro Cell Dev Biol Anim 38:97–101. doi:10.1290/1071-2690(2002)038<0097:AIMFTC>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  37. Waetzig GH, Rose-John S (2012) Hitting a complex target: an update on interleukin-6 trans-signalling. Expert Opin Ther Targets 16:225–236. doi:10.1517/14728222.2012.660307

    Article  CAS  PubMed  Google Scholar 

  38. Waldenstrom A, Martinussen HJ, Gerdin B, Hallgren R (1991) Accumulation of hyaluronan and tissue edema in experimental myocardial infarction. J Clin Invest 88:1622–1628. doi:10.1172/JCI115475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Westermann D, Mersmann J, Melchior A, Freudenberger T, Petrik C, Schaefer L, Lullmann-Rauch R, Lettau O, Jacoby C, Schrader J, Brand-Herrmann SM, Young MF, Schultheiss HP, Levkau B, Baba HA, Unger T, Zacharowski K, Tschope C, Fischer JW (2008) Biglycan is required for adaptive remodeling after myocardial infarction. Circulation 117:1269–1276. doi:10.1161/CIRCULATIONAHA.107.714147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance of Annika Zimmermann is greatly acknowledged.

Conflict of interest

No conflict of interest to be reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens W. Fischer.

Additional information

C. Tschöpe, Berlin, Germany, served as guest editor for the manuscript and was responsible for all editorial decisions, including the selection of reviewers. The policy applies to all manuscripts with authors from the editor’s institution.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, J., Gorressen, S., Grandoch, M. et al. Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction. Basic Res Cardiol 109, 440 (2014). https://doi.org/10.1007/s00395-014-0440-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0440-y

Keywords

Navigation