Skip to main content

Advertisement

Log in

Secretion of adiponectin from mouse aorta and its role in cold storage-induced vascular dysfunction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Availability of adiponectin plays a crucial role in cardiovascular function. The present study was conducted to evaluate the presence, alterations and impact of the various adiponectin isoforms in vascular tissue under clinically relevant in vitro conditions (cold storage). Presence of various adiponectin isoforms in vascular smooth muscle cells and their regulation during cold storage was evaluated by PCR, western blot, ELISA and immunohistochemistry. The impact of the various isoforms for vessel preservation was assessed using isometric force measurement as an in vitro assay for vascular function. Adiponectin is expressed in smooth muscle cells from murine aortae and human saphenous veins. Following 2 days of cold storage adiponectin mRNA expression in mouse aorta is reduced, which appears to be regulated indirectly by miR-292-3p. Despite the reduced mRNA expression, adiponectin accumulated in cold storage supernatant over 2 days indicating a net release of adiponectin. Two days of cold storage resulted in an impairment of endothelium-dependent relaxation which was prevented by addition of full-length adiponectin in concentrations similar to normal plasma levels during storage. In contrast, addition of recombinant adiponectin which is unable to form high order multimers failed to improve vessel function. High concentrations (20 μg/mL) of this trimeric isoform even reduced the vasorelaxation response and facilitated uncoupling of endothelial nitric oxide synthase. Endothelial injury by cold storage may partly be prevented by addition of high-molecular-weight adiponectin. This effect may support graft patency to avoid coagulation- and atherosclerosis-associated impairment of perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Albinsson S, Skoura A, Yu J, DiLorenzo A, Fernandez-Hernando C, Offermanns S, Miano JM, Sessa WC (2011) Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS ONE 6:e18869

    Article  PubMed  CAS  Google Scholar 

  2. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  PubMed  CAS  Google Scholar 

  3. Bork S, Horn P, Castoldi M, Hellwig I, Ho AD, Wagner W (2011) Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol 226:2226–2234

    Article  PubMed  CAS  Google Scholar 

  4. Cao Y, Tao L, Yuan Y, Jiao X, Lau WB, Wang Y, Christopher T, Lopez B, Chan L, Goldstein B, Ma XL (2009) Endothelial dysfunction in adiponectin deficiency and its mechanisms involved. J Mol Cell Cardiol 46:413–419

    Article  PubMed  CAS  Google Scholar 

  5. Ding M, Carrao AC, Wagner RJ, Xie Y, Jin Y, Rzucidlo EM, Yu J, Li W, Tellides G, Hwa J, Aprahamian TR, Martin KA (2012) Vascular smooth muscle cell-derived adiponectin: a paracrine regulator of contractile phenotype. J Mol Cell Cardiol 52:474–484

    Article  PubMed  CAS  Google Scholar 

  6. Dschietzig T, Brecht A, Bartsch C, Baumann G, Stangl K, Alexiou K (2012) Relaxin improves TNF-alpha-induced endothelial dysfunction: the role of glucocorticoid receptor and phosphatidylinositol 3-kinase signalling. Cardiovasc Res 95:97–107

    Article  PubMed  CAS  Google Scholar 

  7. Ebner A, Poitz DM, Augstein A, Strasser RH, Deussen A (2012) Functional, morphologic, and molecular characterization of cold storage injury. J Vasc Surg

  8. Fasshauer M, Paschke R (2003) Regulation of adipocytokines and insulin resistance. Diabetologia 46:1594–1603

    Article  PubMed  CAS  Google Scholar 

  9. Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459:793–806

    Article  PubMed  CAS  Google Scholar 

  10. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 98:2005–2010

    Article  PubMed  CAS  Google Scholar 

  11. Fujimoto N, Matsuo N, Sumiyoshi H, Yamaguchi K, Saikawa T, Yoshimatsu H, Yoshioka H (2005) Adiponectin is expressed in the brown adipose tissue and surrounding immature tissues in mouse embryos. Biochim Biophys Acta 1731:1–12

    Article  PubMed  CAS  Google Scholar 

  12. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    PubMed  CAS  Google Scholar 

  13. Garbe S, Zatschler B, Muller B, Dieterich P, Ebner A, Rauen U, Matschke K, Deussen A (2011) Preservation of human artery function following prolonged cold storage with a new solution. J Vasc Surg 53:1063–1070

    Article  PubMed  Google Scholar 

  14. Houbaviy HB, Dennis L, Jaenisch R, Sharp PA (2005) Characterization of a highly variable eutherian microRNA gene. RNA 11:1245–1257

    Article  PubMed  CAS  Google Scholar 

  15. Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA 101:10308–10313

    Article  PubMed  CAS  Google Scholar 

  16. Khong SM, Andrews KL, Huynh NN, Venardos K, Aprico A, Michell DL, Zarei M, Moe KT, Dusting GJ, Kaye DM, Chin-Dusting JP (2012) Arginase II inhibition prevents nitrate tolerance. Br J Pharmacol 166:2015–2023

    Article  PubMed  CAS  Google Scholar 

  17. Kloting N, Berthold S, Kovacs P, Schon MR, Fasshauer M, Ruschke K, Stumvoll M, Bluher M (2009) MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE 4:e4699

    Article  PubMed  Google Scholar 

  18. Komura N, Kihara S, Sonoda M, Kumada M, Fujita K, Hiuge A, Okada T, Nakagawa Y, Tamba S, Kuroda Y, Hayashi N, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, Arita Y, Okamoto Y, Shimomura I, Funahashi T, Matsuzawa Y (2008) Clinical significance of high-molecular weight form of adiponectin in male patients with coronary artery disease. Circ J 72:23–28

    Article  PubMed  CAS  Google Scholar 

  19. Komura N, Kihara S, Sonoda M, Maeda N, Tochino Y, Funahashi T, Shimomura I (2010) Increment and impairment of adiponectin in renal failure. Cardiovasc Res 86:471–477

    Article  PubMed  CAS  Google Scholar 

  20. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, Arita Y, Okamoto Y, Shimomura I, Hiraoka H, Nakamura T, Funahashi T, Matsuzawa Y (2003) Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 23:85–89

    Article  PubMed  CAS  Google Scholar 

  21. Lehle K, Hoenicka M, Jacobs VR, Schmid FX, Birnbaum DE (2006) Identification and reduction of cryoinjury in endothelial cells: a first step toward establishing a cell bank for vascular tissue engineering. Tissue Eng 12:3439–3447

    Article  PubMed  CAS  Google Scholar 

  22. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476

    Article  PubMed  CAS  Google Scholar 

  23. Ouchi N, Ohishi M, Kihara S, Funahashi T, Nakamura T, Nagaretani H, Kumada M, Ohashi K, Okamoto Y, Nishizawa H, Kishida K, Maeda N, Nagasawa A, Kobayashi H, Hiraoka H, Komai N, Kaibe M, Rakugi H, Ogihara T, Matsuzawa Y (2003) Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 42:231–234

    Article  PubMed  CAS  Google Scholar 

  24. Owens CD, Kim JM, Hevelone ND, Hamdan A, Raffetto JD, Creager MA, Conte MS (2010) Novel adipokines, high molecular weight adiponectin and resisting, are associated with outcomes following lower extremity revascularization with autogenous vein. J Vasc Surg 51:1152–1159

    Article  PubMed  Google Scholar 

  25. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE (2003) Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol Chem 278:9073–9085

    Article  PubMed  CAS  Google Scholar 

  26. Pexa A, Boeger RH, Henle T, Schwedhelm E, Deussen A (2008) Effects of moderate hyperhomocysteinaemia induced by 4 weeks methionine-enriched diet on metabolite profile and mesenteric artery function in rats. Br J Nutr 99:993–999

    Article  PubMed  CAS  Google Scholar 

  27. Pineiro R, Iglesias MJ, Gallego R, Raghay K, Eiras S, Rubio J, Dieguez C, Gualillo O, Gonzalez-Juanatey JR, Lago F (2005) Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett 579:5163–5169

    Article  PubMed  CAS  Google Scholar 

  28. Schraw T, Wang ZV, Halberg N, Hawkins M, Scherer PE (2008) Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology 149:2270–2282

    Article  PubMed  CAS  Google Scholar 

  29. Shin S, Kim S, Oh HE, Kong H, Shin E, Do SG, Jo TH, Park YI, Lee CK, Kim K (2012) Dietary aloe QDM complex reduces obesity-induced insulin resistance and adipogenesis in obese mice fed a high-fat diet. Immune Netw 12:96–103

    Article  PubMed  Google Scholar 

  30. Vandesompele J, De Peter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  PubMed  Google Scholar 

  31. Waki H, Yamauchi T, Kamon J, Kita S, Ito Y, Hada Y, Uchida S, Tsuchida A, Takekawa S, Kadowaki T (2005) Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 146:790–796

    Article  PubMed  CAS  Google Scholar 

  32. Waldron GJ, Cole WC (1999) Activation of vascular smooth muscle K+ channels by endothelium-derived relaxing factors. Clin Exp Pharmacol Physiol 26:180–184

    Article  PubMed  CAS  Google Scholar 

  33. Wolf AM, Wolf D, Avila MA, Moschen AR, Berasain C, Enrich B, Rumpold H, Tilg H (2006) Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. J Hepatol 44:537–543

    Article  PubMed  CAS  Google Scholar 

  34. Xu A, Chan KW, Hoo RL, Wang Y, Tan KC, Zhang J, Chen B, Lam MC, Tse C, Cooper GJ, Lam KS (2005) Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J Biol Chem 280:18073–18080

    Article  PubMed  CAS  Google Scholar 

  35. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    Article  PubMed  CAS  Google Scholar 

  36. Yokota T, Meka CS, Medina KL, Igarashi H, Comp PC, Takahashi M, Nishida M, Oritani K, Miyagawa J, Funahashi T, Tomiyama Y, Matsuzawa Y, Kincade PW (2002) Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. J Clin Invest 109:1303–1310

    PubMed  CAS  Google Scholar 

  37. Zatschler B, Dieterich P, Muller B, Kasper M, Rauen U, Deussen A (2009) Improved vessel preservation after 4 days of cold storage: experimental study in rat arteries. J Vasc Surg 50:397–406

    Article  PubMed  Google Scholar 

  38. Zhang Q, Sun H, Jiang Y, Ding L, Wu S, Fang T, Yan G, Hu Y (2013) MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS ONE 8:e59667

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Peggy Barthel, Antje Messer and Birgit Zatschler for excellent technical assistance. This work was supported by MeDDrive grant program of the Medical Faculty Carl Gustav Carus at Dresden University of Technology [33-60.232 to A.E.]. TiProtec® storage solution was a kind gift from Dr. F. Köhler GmbH.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Deussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebner, A., Poitz, D.M., Alexiou, K. et al. Secretion of adiponectin from mouse aorta and its role in cold storage-induced vascular dysfunction. Basic Res Cardiol 108, 390 (2013). https://doi.org/10.1007/s00395-013-0390-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0390-9

Keywords

Navigation