Skip to main content

Advertisement

Log in

CD40L contributes to angiotensin II-induced pro-thrombotic state, vascular inflammation, oxidative stress and endothelial dysfunction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

CD40 ligand (CD40L) is involved in the vascular infiltration of immune cells and pathogenesis of atherosclerosis. Additionally, T cell CD40L release causes platelet, dendritic cell and monocyte activation in thrombosis. However, the role of CD40L in angiotensin II (ATII)-driven vascular dysfunction and hypertension remains incompletely understood. We tested the hypothesis that CD40L contributes to ATII-driven vascular inflammation by promoting platelet–leukocyte activation, vascular infiltration of immune cells and by amplifying oxidative stress. C57BL/6 and CD40L−/− mice were infused with ATII (1 mg/kg/day for 7 days) using osmotic minipumps. Vascular function was recorded by isometric tension studies, and reactive oxygen species (ROS) were monitored in blood and heart by optical methods. Western blot, immunohistochemistry, FACS analysis and real-time RT-PCR were used to analyze immune cell distribution, pro-inflammatory cytokines, NAPDH oxidase subunits, T cell transcription factors and other genes of interest. ATII-treated CD40L−/− mice showed improved endothelial function, suppression of blood platelet–monocyte interaction (FACS), platelet thrombin generation (calibrated automated thrombography) and coagulation (bleeding time), as well as decreased oxidative stress in the aorta, heart and blood compared to wild-type mice. Moreover, ATII-treated CD40L−/− mice displayed decreased levels of TH1 cytokines released by splenic CD4+ T cells (ELISA) and lower expression levels of NOX-2, T-bet and P-selectin as well as diminished immune cell infiltration in aortic tissue compared to controls. Our results demonstrate that many ATII-induced effects on vascular dysfunction, such as vascular inflammation, oxidative stress and a pro-thrombotic state, are mediated at least in part via CD40L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akasaki T, Ohya Y, Kuroda J, Eto K, Abe I, Sumimoto H, Iida M (2006) Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: involvement of the renin–angiotensin system. Hypertens Res 29:813–820. doi:10.1291/hypres.29.813

    Article  PubMed  CAS  Google Scholar 

  2. Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, Phillips DR, Wagner DD (2002) CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med 8:247–252. doi:10.1038/nm0302-247

    Article  PubMed  CAS  Google Scholar 

  3. Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C (2009) The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol 54:669–677. doi:10.1016/j.jacc.2009.03.076

    Article  PubMed  CAS  Google Scholar 

  4. Atochina O, Harn D (2005) LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40–CD40L interaction. Clin Diagn Lab Immunol 12:1041–1049. doi:10.1128/CDLI.12.9.1041-1049.2005

    PubMed  CAS  Google Scholar 

  5. Bavendiek U, Zirlik A, LaClair S, MacFarlane L, Libby P, Schonbeck U (2005) Atherogenesis in mice does not require CD40 ligand from bone marrow-derived cells. Arterioscler Thromb Vasc Biol 25:1244–1249. doi:10.1161/01.ATV.0000161420.55482.ef

    Article  PubMed  CAS  Google Scholar 

  6. Crow AR, Leytin V, Starkey AF, Rand ML, Lazarus AH (2003) CD154 (CD40 ligand)-deficient mice exhibit prolonged bleeding time and decreased shear-induced platelet aggregates. J Thromb Haemost 1:850–852. doi:10.1046/j.1538-7836.2003.t01-1-00115.x

    Article  PubMed  CAS  Google Scholar 

  7. Daiber A, August M, Baldus S, Wendt M, Oelze M, Sydow K, Kleschyov AL, Munzel T (2004) Measurement of NAD(P)H oxidase-derived superoxide with the luminol analogue L-012. Free Radic Biol Med 36:101–111. doi:10.1016/j.freeradbiomed.2003.09.023

    Article  PubMed  CAS  Google Scholar 

  8. Daiber A, Oelze M, Coldewey M, Bachschmid M, Wenzel P, Sydow K, Wendt M, Kleschyov AL, Stalleicken D, Ullrich V, Mulsch A, Munzel T (2004) Oxidative stress and mitochondrial aldehyde dehydrogenase activity: a comparison of pentaerythritol tetranitrate with other organic nitrates. Mol Pharmacol 66:1372–1382. doi:10.1124/mol.104.002600

    Article  PubMed  CAS  Google Scholar 

  9. Davis B, Zou MH (2005) CD40 ligand-dependent tyrosine nitration of prostacyclin synthase in vivo. Circulation 112:2184–2192. doi:10.1161/CIRCULATIONAHA.105.553206

    Article  PubMed  CAS  Google Scholar 

  10. Donners MM, Beckers L, Lievens D, Munnix I, Heemskerk J, Janssen BJ, Wijnands E, Cleutjens J, Zernecke A, Weber C, Ahonen CL, Benbow U, Newby AC, Noelle RJ, Daemen MJ, Lutgens E (2008) The CD40–TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood 111:4596–4604. doi:10.1182/blood-2007-05-088906

    Article  PubMed  CAS  Google Scholar 

  11. Erbel C, Dengler TJ, Wangler S, Lasitschka F, Bea F, Wambsganss N, Hakimi M, Bockler D, Katus HA, Gleissner CA (2011) Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Res Cardiol 106:125–134. doi:10.1007/s00395-010-0135-y

    Article  PubMed  CAS  Google Scholar 

  12. Ferroni P, Guadagni F (2008) Soluble CD40L and its role in essential hypertension: diagnostic and therapeutic implications. Cardiovasc Hematol Disord: Drug Targets 8:194–202. doi:10.2174/187152908785849125

    Article  CAS  Google Scholar 

  13. Ferroni P, Guagnano MT, Falco A, Paoletti V, Manigrasso MR, Michetti N, Santilli F, Guadagni F, Basili S, Davi G (2008) Association of low-grade inflammation and platelet activation in patients with hypertension with microalbuminuria. Clin Sci (Lond) 114:449–455. doi:10.1042/CS20070307

    Article  CAS  Google Scholar 

  14. Frenette PS, Denis CV, Weiss L, Jurk K, Subbarao S, Kehrel B, Hartwig JH, Vestweber D, Wagner DD (2000) P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med 191:1413–1422. doi:10.1084/jem.191.8.1413

    Article  PubMed  CAS  Google Scholar 

  15. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148. doi:10.1161/01.RES.74.6.1141

    Article  PubMed  CAS  Google Scholar 

  16. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG (2007) Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204:2449–2460. doi:10.1084/jem.20070657

    Article  PubMed  CAS  Google Scholar 

  17. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM (2011) Inflammation, immunity, and hypertension. Hypertension 57:132–140. doi:10.1161/HYPERTENSIONAHA.110.163576

    Article  PubMed  CAS  Google Scholar 

  18. Hassan GS, Merhi Y, Mourad W (2012) CD40 ligand: a neo-inflammatory molecule in vascular diseases. Immunobiology 217:521–532. doi:10.1016/j.imbio.2011.03.010

    Article  PubMed  CAS  Google Scholar 

  19. Jagroop IA, Mikhailidis DP (2000) Angiotensin II can induce and potentiate shape change in human platelets: effect of losartan. J Hum Hypertens 14:581–585. doi:10.1038/sj.jhh.1001102

    Article  PubMed  CAS  Google Scholar 

  20. Jurk K, Ritter MA, Schriek C, Van Aken H, Droste DW, Ringelstein EB, Kehrel BE (2010) Activated monocytes capture platelets for heterotypic association in patients with severe carotid artery stenosis. Thromb Haemost 103:1193–1202. doi:10.1160/TH09-09-0620

    Article  PubMed  CAS  Google Scholar 

  21. Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 6:114. doi:10.1038/72162

    Article  CAS  Google Scholar 

  22. Keul P, Lucke S, von Wnuck Lipinski K, Bode C, Graler M, Heusch G, Levkau B (2011) Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res 108:314–323. doi:10.1161/CIRCRESAHA.110.235028

    Article  PubMed  CAS  Google Scholar 

  23. Kleschyov AL, Munzel T (2002) Advanced spin trapping of vascular nitric oxide using colloid iron diethyldithiocarbamate. Methods Enzymol 359:42–51. doi:10.1016/S0076-6879(02)59170-9

    Article  PubMed  CAS  Google Scholar 

  24. Koguchi Y, Thauland TJ, Slifka MK, Parker DC (2007) Preformed CD40 ligand exists in secretory lysosomes in effector and memory CD4+ T cells and is quickly expressed on the cell surface in an antigen-specific manner. Blood 110:2520–2527. doi:10.1182/blood-2007-03-081299

    Article  PubMed  CAS  Google Scholar 

  25. Kossmann S, Schwenk M, Hausding M, Karbach SH, Schmidgen MI, Brandt M, Knorr M, Hu H, Kroller-Schon S, Schonfelder T, Grabbe S, Oelze M, Daiber A, Munzel T, Becker C, Wenzel P (2013) Angiotensin II-induced vascular dysfunction depends on interferon-gamma-driven immune cell recruitment and mutual activation of monocytes and NK-cells. Arterioscler Thromb Vasc Biol 33:1313–1319. doi:10.1161/ATVBAHA.113.301437

    Article  PubMed  CAS  Google Scholar 

  26. Kranzhofer R, Schmidt J, Pfeiffer CA, Hagl S, Libby P, Kubler W (1999) Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19:1623–1629. doi:10.1161/01.ATV.19.7.1623

    Article  PubMed  CAS  Google Scholar 

  27. Kroller-Schon S, Knorr M, Hausding M, Oelze M, Schuff A, Schell R, Sudowe S, Scholz A, Daub S, Karbach S, Kossmann S, Gori T, Wenzel P, Schulz E, Grabbe S, Klein T, Munzel T, Daiber A (2012) Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc Res 96:140–149. doi:10.1093/cvr/cvs246

    Article  PubMed  Google Scholar 

  28. Kroller-Schon S, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Xia N, Hausding M, Mikhed Y, Zinssius E, Mader M, Stamm P, Treiber N, Scharffetter-Kochanek K, Li H, Schulz E, Wenzel P, Munzel T, Daiber A (2013) Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species—studies in white blood cells and in animal models. Antioxid Redox Signal. doi:10.1089/ars.2012.4953

    PubMed  Google Scholar 

  29. Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515. doi:10.1161/01.HYP.0000032100.23772.98

    Article  PubMed  CAS  Google Scholar 

  30. Li G, Sanders JM, Bevard MH, Sun Z, Chumley JW, Galkina EV, Ley K, Sarembock IJ (2008) CD40 ligand promotes Mac-1 expression, leukocyte recruitment, and neointima formation after vascular injury. Am J Pathol 172:1141–1152. doi:10.2353/ajpath.2008.070633

    Article  PubMed  CAS  Google Scholar 

  31. Lievens D, Zernecke A, Seijkens T, Soehnlein O, Beckers L, Munnix IC, Wijnands E, Goossens P, van Kruchten R, Thevissen L, Boon L, Flavell RA, Noelle RJ, Gerdes N, Biessen EA, Daemen MJ, Heemskerk JW, Weber C, Lutgens E (2010) Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 116:4317–4327. doi:10.1182/blood-2010-01-261206

    Article  PubMed  CAS  Google Scholar 

  32. Lutgens E, Lievens D, Beckers L, Wijnands E, Soehnlein O, Zernecke A, Seijkens T, Engel D, Cleutjens J, Keller AM, Naik SH, Boon L, Oufella HA, Mallat Z, Ahonen CL, Noelle RJ, de Winther MP, Daemen MJ, Biessen EA, Weber C (2010) Deficient CD40–TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 207:391–404. doi:10.1084/jem.20091293

    Article  PubMed  CAS  Google Scholar 

  33. Mach F, Schonbeck U, Bonnefoy JY, Pober JS, Libby P (1997) Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 96:396–399. doi:10.1161/01.CIR.96.2.396

    Article  PubMed  CAS  Google Scholar 

  34. Martinet W, De Meyer I, Verheye S, Schrijvers DM, Timmermans JP, De Meyer GR (2013) Drug-induced macrophage autophagy in atherosclerosis: for better or worse? Basic Res Cardiol 108:321. doi:10.1007/s00395-012-0321-1

    Article  PubMed  Google Scholar 

  35. Martinet W, Schrijvers DM, De Meyer GR (2012) Molecular and cellular mechanisms of macrophage survival in atherosclerosis. Basic Res Cardiol 107:297. doi:10.1007/s00395-012-0297-x

    Article  PubMed  Google Scholar 

  36. Martinet W, Schrijvers DM, De Meyer GR (2011) Necrotic cell death in atherosclerosis. Basic Res Cardiol 106:749–760. doi:10.1007/s00395-011-0192-x

    Article  PubMed  CAS  Google Scholar 

  37. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90:E58–E65. doi:10.1161/01.RES.0000012569.55432.02

    Article  PubMed  Google Scholar 

  38. Morawietz H (2011) Endothelial NADPH oxidases: friends or foes? Basic Res Cardiol 106:521–525. doi:10.1007/s00395-011-0188-6

    Article  PubMed  Google Scholar 

  39. Nagashima H, Aoka Y, Sakomura Y, Uto K, Sakuta A, Aomi S, Kurosawa H, Hagiwara N, Kawana M, Kasanuki H (2004) Matrix metalloproteinase 2 is suppressed by trapidil, a CD40–CD40 ligand pathway inhibitor, in human abdominal aortic aneurysm wall. J Vasc Surg 39:447–453. doi:10.1016/j.jvs.2003.07.005

    Article  PubMed  Google Scholar 

  40. Oelze M, Knorr M, Schell R, Kamuf J, Pautz A, Art J, Wenzel P, Munzel T, Kleinert H, Daiber A (2011) Regulation of human mitochondrial aldehyde dehydrogenase (ALDH-2) activity by electrophiles in vitro. J Biol Chem 286:8893–8900. doi:10.1074/jbc.M110.190017

    Article  PubMed  CAS  Google Scholar 

  41. Oelze M, Schuhmacher S, Daiber A (2010) Organic nitrates and nitrate resistance in diabetes: the role of vascular dysfunction and oxidative stress with emphasis on antioxidant properties of pentaerithrityl tetranitrate. Exp Diabetes Res 2010:213176. doi:10.1155/2010/213176

    Article  PubMed  Google Scholar 

  42. Ohishi M, Dusting GJ, Fennessy PA, Mendelsohn FA, Li XC, Zhuo JL (2010) Increased expression and co-localization of ACE, angiotensin II AT(1) receptors and inducible nitric oxide synthase in atherosclerotic human coronary arteries. Int J Physiol Pathophysiol Pharmacol 2:111–124

    PubMed  CAS  Google Scholar 

  43. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328. doi:10.1146/annurev.immunol.22.012703.104533

    Article  PubMed  CAS  Google Scholar 

  44. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923. doi:10.1172/JCI118623

    Article  PubMed  CAS  Google Scholar 

  45. Renshaw BR, Fanslow WC 3rd, Armitage RJ, Campbell KA, Liggitt D, Wright B, Davison BL, Maliszewski CR (1994) Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 180:1889–1900. doi:10.1084/jem.180.5.1889

    Article  PubMed  CAS  Google Scholar 

  46. Ruef J, Browatzki M, Pfeiffer CA, Schmidt J, Kranzhofer R (2007) Angiotensin II promotes the inflammatory response to CD40 ligation via TRAF-2. Vasc Med 12:23–27. doi:10.1177/1358863X07076766

    Article  PubMed  Google Scholar 

  47. Schildknecht S, Heinz K, Daiber A, Hamacher J, Kavakli C, Ullrich V, Bachschmid M (2006) Autocatalytic tyrosine nitration of prostaglandin endoperoxide synthase-2 in LPS-stimulated RAW 264.7 macrophages. Biochem Biophys Res Commun 340:318–325. doi:10.1016/j.bbrc.2005.12.009

    Article  PubMed  CAS  Google Scholar 

  48. Schuhmacher S, Foretz M, Knorr M, Jansen T, Hortmann M, Wenzel P, Oelze M, Kleschyov AL, Daiber A, Keaney JF Jr, Wegener G, Lackner K, Munzel T, Viollet B, Schulz E (2011) alpha1AMP-activated protein kinase preserves endothelial function during chronic angiotensin II treatment by limiting Nox2 upregulation. Arterioscler Thromb Vasc Biol 31:560–566. doi:10.1161/ATVBAHA.110.219543

    Article  PubMed  CAS  Google Scholar 

  49. Schuhmacher S, Schulz E, Oelze M, Konig A, Roegler C, Lange K, Sydow L, Kawamoto T, Wenzel P, Munzel T, Lehmann J, Daiber A (2009) A new class of organic nitrates: investigations on bioactivation, tolerance and cross-tolerance phenomena. Br J Pharmacol 158:510–520. doi:10.1111/j.1476-5381.2009.00303.x

    Article  PubMed  CAS  Google Scholar 

  50. Schulz E, Dopheide J, Schuhmacher S, Thomas SR, Chen K, Daiber A, Wenzel P, Munzel T, Keaney JF Jr (2008) Suppression of the JNK pathway by induction of a metabolic stress response prevents vascular injury and dysfunction. Circulation 118:1347–1357. doi:10.1161/CIRCULATIONAHA.108.784298

    PubMed  CAS  Google Scholar 

  51. Sirker A, Zhang M, Shah AM (2011) NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 106:735–747. doi:10.1007/s00395-011-0190-z

    Article  PubMed  CAS  Google Scholar 

  52. Siuda D, Zechner U, El Hajj N, Prawitt D, Langer D, Xia N, Horke S, Pautz A, Kleinert H, Forstermann U, Li H (2012) Transcriptional regulation of Nox4 by histone deacetylases in human endothelial cells. Basic Res Cardiol 107:283. doi:10.1007/s00395-012-0283-3

    Article  PubMed  Google Scholar 

  53. Strassel C, Nonne C, Eckly A, David T, Leon C, Freund M, Cazenave JP, Gachet C, Lanza F (2007) Decreased thrombotic tendency in mouse models of the Bernard–Soulier syndrome. Arterioscler Thromb Vasc Biol 27:241–247. doi:10.1161/01.ATV.0000251992.47053.75

    Article  PubMed  CAS  Google Scholar 

  54. Tchaikovski SN, van Vlijmen BJ, Rosing J, Tans G (2007) Development of a calibrated automated thrombography based thrombin generation test in mouse plasma. J Thromb Haemost 5:2079–2086. doi:10.1111/j.1538-7836.2007.02719.x

    Article  PubMed  CAS  Google Scholar 

  55. Wagner AH, Guldenzoph B, Lienenluke B, Hecker M (2004) CD154/CD40-mediated expression of CD154 in endothelial cells: consequences for endothelial cell–monocyte interaction. Arterioscler Thromb Vasc Biol 24:715–720. doi:10.1161/01.ATV.0000122853.99978.b1

    Article  PubMed  CAS  Google Scholar 

  56. Wenzel P, Hink U, Oelze M, Schuppan S, Schaeuble K, Schildknecht S, Ho KK, Weiner H, Bachschmid M, Munzel T, Daiber A (2007) Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity. Implications for mitochondrial oxidative stress and nitrate tolerance. J Biol Chem 282:792–799. doi:10.1074/jbc.M606477200

    Article  PubMed  CAS  Google Scholar 

  57. Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, Karbach SH, Schwenk M, Yogev N, Schulz E, Oelze M, Grabbe S, Jonuleit H, Becker C, Daiber A, Waisman A, Munzel T (2011) Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation 124:1370–1381. doi:10.1161/CIRCULATIONAHA.111.034470

    Article  PubMed  CAS  Google Scholar 

  58. Wenzel P, Schulz E, Oelze M, Muller J, Schuhmacher S, Alhamdani MS, Debrezion J, Hortmann M, Reifenberg K, Fleming I, Munzel T, Daiber A (2008) AT1-receptor blockade by telmisartan upregulates GTP-cyclohydrolase I and protects eNOS in diabetic rats. Free Radic Biol Med 45:619–626. doi:10.1016/j.freeradbiomed.2008.05.009

    Article  PubMed  CAS  Google Scholar 

  59. Wolf D, Hohmann JD, Wiedemann A, Bledzka K, Blankenbach H, Marchini T, Gutte K, Zeschky K, Bassler N, Hoppe N, Rodriguez AO, Herr N, Hilgendorf I, Stachon P, Willecke F, Duerschmied D, von zur Muhlen C, Soloviev DA, Zhang L, Bode C, Plow EF, Libby P, Peter K, Zirlik A (2011) Binding of CD40L to Mac-1′s I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis—but does not affect immunity and thrombosis in mice. Circ Res 109:1269–1279. doi:10.1161/CIRCRESAHA.111.247684

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge A. Karpi, P. Hölter, J. Schreiner, N. Glas, J. Rudolph, B. Mros and E. Montermann for their excellent technical assistance and Dr. J. Altmeier for her help in FACS analysis in the FACS Core Facility of the University Medical Center Mainz, Germany. We highly appreciate the contribution of our graphical artist Margot Neuser. We thank Prof. Dr. H.J. Schild and Dr. P. Stein (Institute for Immunology, University of Mainz, Germany) for providing the CD40L−/− mice. This work was supported by funds from the Federal Ministry of Education and Research (BMBF 01EO1003) to A.D., S.G., K.J., P.W., C.B. and T.M; S.K.-S., E.S., A.D. and P.W. were supported by grants of the German Research Foundation (WE 4361/3-1 and WE 4361/4-1) and T.M. holds grants from the Stiftung Mainzer Herz. Y. Mikhed holds a stipend from the International PhD Programme on the “Dynamics of Gene Regulation, Epigenetics and DNA Damage Response” from the Institute of Molecular Biology gGmbH (Mainz, Germany) funded by the Boehringer Ingelheim Foundation. This work contains parts of the thesis of S. Daub.

Conflict of interest

The authors have no financial conflict to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephan Grabbe or Andreas Daiber.

Additional information

T. Münzel, S. Grabbe and A. Daiber contributed equally and are joint senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 698 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausding, M., Jurk, K., Daub, S. et al. CD40L contributes to angiotensin II-induced pro-thrombotic state, vascular inflammation, oxidative stress and endothelial dysfunction. Basic Res Cardiol 108, 386 (2013). https://doi.org/10.1007/s00395-013-0386-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0386-5

Keywords

Navigation