Skip to main content
Log in

The physiological significance of a coronary stenosis differentially affects contractility and mitochondrial function in viable chronically dysfunctional myocardium

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The reversibility of viable dysfunctional myocardium after revascularization is variable and the reasons for this are unknown. Using 2D-DIGE, we tested the hypothesis that this could reflect the extent of molecular remodeling of myocardial tissue in the absence of infarction. Swine with a progressive left anterior descending (LAD) stenosis were studied 2 months (n = 18) or 3 months (n = 22) post-instrumentation. Coronary flow reserve (vasodilated/rest) was severely reduced at 2 months (LAD 2.6 ± 0.4 versus 5.1 ± 0.4 in normal, p < 0.05) and became critically impaired after 3 months (LAD 1.1 ± 0.2, p < 0.05 vs. 2 months). Despite progression in stenosis severity, reductions in wall thickening at 2 months (LAD 37 ± 4 % vs. remote 86 ± 9 %, p < 0.05) were unchanged at 3 months (LAD 32 ± 3 %, p = ns). Contractile dysfunction was primarily related to reductions (LAD/normal) in contractile proteins which were not affected by stenosis severity (e.g., troponin T, 2 months 0.82 ± 0.03 vs. 0.74 ± 0.03 at 3 months, p-ns). In contrast, mitochondrial function and proteins were normal at 2 months but declined with progression to a critical stenosis (state 3 respiration at 3 months 145 ± 13 vs. 216 ± 5 ng-atoms O2 mg−1 min−1 at 2 months, p < 0.05). In a similar fashion, increases in stress (e.g., αB-crystalline 2.13 ± 0.2 vs. 1.17 ± 0.13 at 2 months, p < 0.05) and cytoskeletal proteins (e.g., desmin 1.63 ± 0.12 vs. 1.24 ± 0.10 at 2 months, p < 0.05) only developed with more advanced remodeling from a critical stenosis. We conclude that similar degrees of chronic contractile dysfunction can have diverse intrinsic molecular adaptations to ischemia. This spectrum of adaptations may underlie variability in the time course and extent of reversibility in viable chronically dysfunctional myocardium after revascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

EGTA:

Ethylene glycol tetraacetic acid

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HSP:

Heat shock protein

IM:

Intramuscular

IV:

Intravenous

KCl:

Potassium chloride

MOPS:

3-(N-morpholino)propanesulfonic acid

References

  1. Angelini A, Maiolino G, La Canna G, Ceconi C, Calabrese F, Pettenazzo E, Valente M, Alfieri O, Thiene G, Ferrari R (2007) Relevance of apoptosis in influencing recovery of hibernating myocardium. Eur J Heart Fail 9:377–383. doi:10.1016/j.ejheart.2006.09.012

    Article  PubMed  Google Scholar 

  2. Arrell DK, Elliott ST, Kane LA, Guo Y, Ko YH, Pedersen PL, Robinson J, Murata M, Murphy AM, Marban E, Van Eyk JE (2006) Proteomic analysis of pharmacological preconditioning: novel protein targets converge to mitochondrial metabolism pathways. Circ Res 99:706–714. doi:10.1161/01.RES.0000243995.74395.f8

    Article  PubMed  CAS  Google Scholar 

  3. Baker CS, Dutka DP, Pagano D, Rimoldi O, Pitt M, Hall RJ, Polak JM, Bonser RS, Camici PG (2002) Immunocytochemical evidence for inducible nitric oxide synthase and cyclooxygenase-2 expression with nitrotyrosine formation in human hibernating myocardium. Basic Res Cardiol 97:409–415

    Article  PubMed  CAS  Google Scholar 

  4. Borgers M, Ausma J (1995) Structural aspects of the chronic hibernating myocardium in man. Basic Res Cardiol 90:44–46

    PubMed  CAS  Google Scholar 

  5. Canty JM Jr, Fallavollita JA (2005) Hibernating myocardium. J Nucl Cardiol 12:104–119. doi:10.1016/j.nuclcard.2004.11.003

    Article  PubMed  Google Scholar 

  6. Canty JM Jr, Suzuki G (2012) Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease. J Mol Cell Cardiol 52:822–831. doi:10.1016/j.yjmcc.2011.08.019

    Article  PubMed  CAS  Google Scholar 

  7. Duan X, Young RF, Straubinger RM, Page BJ, Cao J, Wang H, Yu Y, Canty JM Jr, Qu J (2009) A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled to a long gradient nano-LC separation and Oprbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome. J Proteome Res 8:2838–2850. doi:10.1021/pr900001t

    Article  PubMed  CAS  Google Scholar 

  8. Fallavollita JA, Canty JM Jr (1999) Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: evidence for chronic stunning in pigs. Circulation 99:2798–2805. doi:10.1161/01.CIR.99.21.2798

    Article  PubMed  CAS  Google Scholar 

  9. Fallavollita JA, Jacob SC, Young RF, Canty JM Jr (1999) Regional alterations in SR Ca2+ ATPase, phospholamban, and HSP-70 expression in chronic hibernating myocardium. Am J Physiol Heart Circ Physiol 277:H1418–H1428

    CAS  Google Scholar 

  10. Fallavollita JA (2000) Spatial heterogeneity in fasting and insulin-stimulated (18)F-2-deoxyglucose uptake in pigs with hibernating myocardium. Circulation 102:908–914. doi:10.1161/01.CIR.102.8.908

    Article  PubMed  CAS  Google Scholar 

  11. Fallavollita JA, Lim H, Canty JM Jr (2001) Myocyte apoptosis and reduced SR gene expression precede the transition from chronically stunned to hibernating myocardium. J Mol Cell Cardiol 33:1937–1944. doi:10.1006/jmcc.2001.1457

    Article  PubMed  CAS  Google Scholar 

  12. Fallavollita JA, Logue M, Canty JM Jr (2001) Stability of hibernating myocardium in pigs with a chronic left anterior descending coronary artery stenosis: absence of progressive fibrosis in the setting of stable reductions in flow, function and coronary flow reserve. J Am Coll Cardiol 37:1989–1995. doi:10.1016/S0735-1097(01)01250-5

    Article  PubMed  CAS  Google Scholar 

  13. Fallavollita JA, Malm BJ, Canty JM Jr (2003) Hibernating myocardium retains metabolic and contractile reserve despite regional reductions in flow, function, and oxygen consumption at rest. Circ Res 92:48–55. doi:10.1161/01.RES.0000049104.57549.03

    Article  PubMed  CAS  Google Scholar 

  14. Fallavollita JA, Perry BJ, Canty JM Jr (1997) 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium: evidence for transmural variations in chronic hibernating myocardium. Circulation 95:1900–1909. doi:10.1161/01.CIR.95.7.1900

    Article  PubMed  CAS  Google Scholar 

  15. Heusch G (1998) Hibernating myocardium. Physiol Rev 78:1055–1085

    PubMed  CAS  Google Scholar 

  16. Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288:H984–H999

    Article  PubMed  CAS  Google Scholar 

  17. Hoppel C, DiMarco JP, Tandler B (1979) Riboflavin and rat hepatic cell structure and function. Mitochondrial oxidative metabolism in deficiency states. J Biol Chem 254:4164–4170

    PubMed  CAS  Google Scholar 

  18. Hu Q, Suzuki G, Young RF, Page BJ, Fallavollita JA, Canty JM Jr (2009) Reductions in mitochondrial O(2) consumption and preservation of high-energy phosphate levels after simulated ischemia in chronic hibernating myocardium. Am J Physiol Heart Circ Physiol 297:H223–H232. doi:10.1152/ajpheart.00992.2008

    Article  PubMed  CAS  Google Scholar 

  19. Kassiotis C, Rajabi M, Taegtmeyer H (2008) Metabolic reserve of the heart: the forgotten link between contraction and coronary flow. Prog Cardiovasc Dis 51:74–88. doi:10.1016/j.pcad.2007.11.005

    Article  PubMed  CAS  Google Scholar 

  20. Kelly RF, Cabrera JA, Ziemba EA, Crampton M, Anderson LB, McFalls EO, Ward HB (2011) Continued depression of maximal oxygen consumption and mitochondrial proteomic expression despite successful coronary artery bypass grafting in a swine model of hibernation. J Thorac Cardiovasc Surg 141:261–268. doi:10.1016/j.jtcvs.2010.08.061

    Article  PubMed  CAS  Google Scholar 

  21. Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, Sadoshima J, Vatner DE, Vatner SF (2003) Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res 92:1233–1239. doi:10.1161/01.RES.0000076892.18394.B6

    Article  PubMed  CAS  Google Scholar 

  22. Kudej RK, White LT, Kudej AB, Vatner SF, Lewandowski ED (2002) Brief increase in carbohydrate oxidation after reperfusion reverses myocardial stunning in conscious pigs. Circulation 106:2836–2841. doi:10.1161/01.CIR.0000039326.87475.98

    Article  PubMed  CAS  Google Scholar 

  23. Lim H, Fallavollita JA, Hard R, Kerr CW, Canty JM Jr (1999) Profound apoptosis-mediated regional myocyte loss and compensatory hypertrophy in pigs with hibernating myocardium. Circulation 100:2380–2386. doi:10.1161/01.CIR.100.23.2380

    Article  PubMed  CAS  Google Scholar 

  24. Luss H, Boknik P, Heusch G, Muller FU, Neumann J, Schmitz W, Schulz R (1998) Expression of calcium regulatory proteins in short-term hibernation and stunning in the in situ porcine heart. Cardiovasc Res 37:606–617

    Article  PubMed  CAS  Google Scholar 

  25. Malm BJ, Suzuki G, Canty JM Jr, Fallavollita JA (2002) Variability of contractile reserve in hibernating myocardium: dependence on the method of stimulation. Cardiovasc Res 56:422–433. doi:10.1016/S0008-6363(02)00599-0

    Article  PubMed  CAS  Google Scholar 

  26. McFalls EO, Sluiter W, Schoonderwoerd K, Manintveld OC, Lamers JM, Bezstarosti K, van Beusekom HM, Sikora J, Ward HB, Merkus D, Duncker DJ (2006) Mitochondrial adaptations within chronically ischemic swine myocardium. J Mol Cell Cardiol 41:980–988. doi:10.1016/j.yjmcc.2006.07.008

    Article  PubMed  CAS  Google Scholar 

  27. Page B, Young R, Iyer V, Suzuki G, Lis M, Korotchkina K, Patel M, Blumenthal K, Fallavollita JA, Canty JM Jr (2008) Persistent regional downregulation in mitochondrial enzymes and upregulation of stress proteins in swine with chronic hibernating myocardium. Circ Res 102:103–112. doi:10.1161/CIRCRESAHA.107.155895

    Article  PubMed  CAS  Google Scholar 

  28. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117:211–221

    Article  PubMed  CAS  Google Scholar 

  29. Rahimtoola SH (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72(suppl V):V123–V135

    PubMed  CAS  Google Scholar 

  30. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931. doi:10.1161/hc4901.100526

    Article  PubMed  CAS  Google Scholar 

  31. Schinkel AF, Bax JJ, Delgado V, Poldermans D, Rahimtoola SH (2010) Clinical relevance of hibernating myocardium in ischemic left ventricular dysfunction. Am J Med 123:978–986. doi:10.1016/j.amjmed.2010.03.025

    Article  PubMed  Google Scholar 

  32. Thijssen VL, Borgers M, Lenders M-H, Ramaekers FC, Suzuki G, Palka B, Fallavollita JA, Thomas SA, Canty JM Jr (2004) Temporal and spatial variations in structural protein expression during the progression from stunned to hibernating myocardium. Circulation 110:3313–3321. doi:10.1161/01.CIR.0000147826.13480.99

    Article  PubMed  CAS  Google Scholar 

  33. Thomas SA, Fallavollita JA, Borgers M, Canty JM Jr (2002) Dissociation of regional adaptations to ischemia and global myolysis in an accelerated swine model of chronic hibernating myocardium. Circ Res 91:970–977. doi:10.1161/01.RES.0000040396.79379.77

    Article  PubMed  CAS  Google Scholar 

  34. Thomas SA, Fallavollita JA, Lee TC, Feng J, Canty JM Jr (1999) Absence of troponin I degradation or altered sarcoplasmic reticulum uptake protein expression after reversible ischemia in swine. Circ Res 85:446–456. doi:10.1161/01.RES.85.5.446

    Article  PubMed  CAS  Google Scholar 

  35. Vanoverschelde JL, Melin JA (2001) The pathophysiology of myocardial hibernation: current controversies and future directions. Prog Cardiovasc Dis 43:387–398. doi:10.1053/pcad.2001.20655

    Article  PubMed  CAS  Google Scholar 

  36. White MY, Edwards AVG, Cordwell SJ, Van Eyk JE (2008) Mitochondria: a mirror into cellular dysfunction in heart disease. Proteomics Clin Appl 2:845–861. doi:10.1002/prca.200780135

    Article  PubMed  CAS  Google Scholar 

  37. Zhang J, Liem DA, Mueller M, Wang Y, Zong C, Deng N, Vondriska TM, Korge P, Drews O, Maclellan WR, Honda H, Weiss JN, Apweiler R, Ping P (2008) Altered proteome biology of cardiac mitochondria under stress conditions. J Proteome Res 7:2204–2214. doi:10.1021/pr070371f

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Anne Coe, Deana Gretka, Elaine Granica and Beth Palka for technical assistance.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. Supported by HL-55324, HL61610 and the Albert and Elizabeth Rekate Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Canty Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, B.J., Young, R.F., Suzuki, G. et al. The physiological significance of a coronary stenosis differentially affects contractility and mitochondrial function in viable chronically dysfunctional myocardium. Basic Res Cardiol 108, 354 (2013). https://doi.org/10.1007/s00395-013-0354-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0354-0

Keywords

Navigation