Skip to main content
Log in

Microembolization and myonecrosis during elective percutaneous coronary interventions in diabetic patients: an intracoronary Doppler ultrasound study with 2-year clinical follow-up

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Elevation of cardiac troponin I (cTnI) is a well-known complication after percutaneous coronary interventions (PCI). The aims of this study were to quantify the extent of coronary microembolization during elective PCI, to identify predisposing anatomical and procedural factors, and to evaluate its impact on long-term outcome in diabetic patients with a high cardiovascular risk. 48 patients (pts, median 66.7 years) with type 2 diabetes and coronary artery disease underwent elective PCI with stenting to treat single-vessel lesions. Real-time microembolization during PCI (“HITS”) was detected by an intracoronary Doppler guide wire. Peak levels of cTnI were measured within 24 h after PCI. Pts were followed for 2 years to record major cardiac events (MACE: death, myocardial infarction, revascularization of target and non-target vessels). In 47 patients microemboli were detected during PCI. Nineteen patients showed pathologic cTnI elevation (0.13–28.9, median 0.39 μg/l). The amount of HITS correlated with cTnI levels (r = 0.43, p = 0.003), but not with other clinical or angiographic data. Within 2 years MACE were detected in 9 patients, who had significantly more microemboli (15.4 ± 11.8 vs. 28.2 ± 16.0 HITS; p = 0.009, OR 1.07; 95 % CI 1.011–1.13) during PCI. HITS >23, but not cTnI elevation, predicted later MACE (ROC analysis, p = 0.025). A high amount of microembolization during elective PCI in diabetic patients appears to be an indicator of greater atherosclerotic burden and accelerated coronary artery disease progression, associated with acute biomarker elevation and adverse long-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdelmeguid AE, Topol EJ, Whitlow PL, Sapp SK, Ellis SG (1996) Significance of mild transient release of creatinine kinase-MB fraction after percutaneous coronary intervention. Circulation 94:1528–1536. doi:10.1161/01.CIR.94.7.1528

    Article  PubMed  CAS  Google Scholar 

  2. Akkerhuis KM, Alexander JH, Tardiff BE, Boersma E, Harrington RA, Lincoff AM, Simoons ML (2002) Minor myocardial damage and prognosis. Circulation 105:554–556. doi:10.1161/hc0502.104278

    Article  PubMed  Google Scholar 

  3. Aronson D, Bloomgarden Z, Rayfield EJ (1996) Potential mechanisms promoting restenosis in diabetic patients. J Am Coll Cardiol 27(3):528–535. doi:10.1016/0735-1097(95)00496-3

    Article  PubMed  CAS  Google Scholar 

  4. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, Roe BB (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:31–33. doi:10.1161/01.CIR.51.4.5

    Article  Google Scholar 

  5. Bahrmann P, Werner GS, Heusch G, Ferrari M, Poerner TC, Voss A, Figulla HR (2007) Detection of coronary microembolization by Doppler ultrasound in patients with stable angina pectoris undergoing elective percutaneous coronary interventions. Circulation 115:600–608. doi:10.1161/CIRCULATIONAHA.106.660779

    Article  PubMed  Google Scholar 

  6. Bahrmann P, Figulla HR, Wagner M, Ferrari M, Voss A, Werner GS (2005) Detection of coronary microembolization by Doppler ultrasound during percutaneous coronary interventions. Heart 91:1186–1192. doi:10.1136/hrt.2004.048629

    Article  PubMed  CAS  Google Scholar 

  7. Bates ER (2008) Aspirating and filtering atherothrombotic debris during percutaneous coronary intervention. JACC Cardiovasc Interv 1(3):265–267. doi:10.1016/j.jcin.2008.04.005

    Article  PubMed  Google Scholar 

  8. Bhatt DL, Topol EJ (2005) Does creatinine kinase-MB elevation after percutaneous coronary intervention predict outcomes in 2005? Periprocedural cardiac enzyme elevation predicts adverse outcomes. Circulation 112:906–915. doi:10.1161/CIRCULATIONAHA.104.483297

    Article  PubMed  CAS  Google Scholar 

  9. Bonzel T, Erbel R, Hamm CW, Levenson B, Neumann FJ, Rupprecht HJ, Zahn R (2008) Percutaneous coronary cnterventions (PCI). Clin Res Cardiol 97:513–547. doi:10.1007/s00392-008-0697-y

    Google Scholar 

  10. Boese D, von Birgelen C, Zhou XY, Schmermund A, Philipp S, Sack S, Konorza T, Möhlenkamp S, Leineweber K, Kleinbongard P, Wijns W, Heusch G, Erbel R (2008) Impact of atherosclerotic plaque composition on coronary microembolization during percutaneous coronary interventions. Basic Res Cardiol 103:587–597. doi:10.1007/s00395-008-0745-9

    Article  Google Scholar 

  11. Bonderman D, Teml A, Jakowitsch J, Adlbrecht C, Gyöngyösi M, Sperker W, Lass H, Mosgoeller W, Glogar DH, Probst P, Maurer G, Nemerson Y, Lang IM (2002) Coronary no-reflow is caused by shedding of active tissue factor from dissected atherosclerotic plaque. Blood 99(8):2794–2800. doi:10.1182/blood.V99.8.2794

    Article  PubMed  CAS  Google Scholar 

  12. Breuckmann F, Nassenstein K, Bucher C, Konietzka I, Kaiser G, Konorza T, Naber C, Skyschally A, Gres P, Heusch G, Erbel R, Barkhausen J (2009) Systematic analysis of functional and structural changes after coronary microembolization: a cardiac magnetic resonance imaging study. JACC Cardiovasc Imaging 2(2):121–130. doi:10.1016/j.jcmg.2008.10.011

    Article  PubMed  Google Scholar 

  13. Califf RM, Abdelmeguid AE, Kuntz RE, Popma JJ, Davidson CJ, Cohen EA, Kleiman NS, Mahaffey KW, Topol EJ, Pepine CJ, Lipicky RJ, Granger CB, Harrington RA, Tardiff BE, Crenshaw BS, Bauman RP, Zuckerman BD, Chaitman BR, Bittl JA, Ohman EM (1998) Myonecrosis after revascularization procedures. J Am Coll Cardiol 31:241–251. doi:10.1016/S0735-1097(97)00506-8

    Article  PubMed  CAS  Google Scholar 

  14. Cavallini C, Savonitto S, Violini R, Arraiz G, Plebani M, Olivari Z, Rubartelli P, Battaglia S, Niccoli L, Steffenino G, Ardissino D (2005) Impact of the elevation of biochemical markers of myocardial damage on long-term mortality after percutaneous coronary intervention: results of the CK-MB and PCI study. Eur Heart J 26:1494–1498. doi:10.1093/eurheartj/ehi173

    Article  PubMed  Google Scholar 

  15. Cutlip DE, Kuntz RE (2005) Does creatinine kinase-MB elevation after percutaneous coronary intervention predict outcomes in 2005? Cardiac enzyme elevation after successful percutaneous coronary intervention is not an independent predictor of adverse outcomes. Circulation 112:916–922. doi:10.1161/CIRCULATIONAHA.104.478347

    PubMed  CAS  Google Scholar 

  16. Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, van Es GA, Steg PG, Morel MA, Mauri L, Vranckx P, McFadden E, Lansky A, Hamon M, Krucoff MW, Serruys PW (2007) Clinical end points in coronary stent trials: a case for standardized definitions. Academic Research Consortium. Circulation 115(17):2344–2351. doi:10.1161/CIRCULATIONAHA.106.685313

    Article  PubMed  Google Scholar 

  17. Ellis SG, Vandormael MG, Cowley MJ, DiSciascio G, Deligonul U, Topol EJ, Bulle TM (1990) Multivessel Angioplasty Prognosis Study Group. Coronary morphologic and clinical determinants of procedural outcome with angioplasty for multivessel coronary disease: implications for patient selection. Circulation 82:1193–1202. doi:10.1161/01.CIR.82.4.1193

    Article  PubMed  CAS  Google Scholar 

  18. El-Jack SS, Suwatchai P, Stewart JT, Ruygrok PN, Ormiston JA, West T, Webster MW (2007) Distal embolization during native vessel and vein graft coronary intervention with a vascular protection device: predictors of high-risk lesions. J Interv Cardiol 20(6):474–480. doi:10.1111/j.1540-8183.2007.00308.x

    Article  PubMed  Google Scholar 

  19. Flygenring BP, Sheehan FH, Kennedy JW, Dodge T (1991) for the TIMI investigators. Does arterial patency 90 minutes following thrombolytic therapy predict 42 day survival? J Am Coll Cardiol 17:275A. doi:10.1016/0735-1097(91)92067-V

  20. Grube E, Gerckens U, Yeung AC, Rowold S, Kirchhof N, Sedgewick J, Yadav JS, Stertzer S (2001) Prevention of distal embolization during coronary angioplasty in saphenous vein grafts and native vessels using porous filter protection. Circulation. 104(20):2436–2441. doi:10.1161/hc4501.099317

    Google Scholar 

  21. Herrmann J (2005) Peri-procedural myocardial injury: 2005 update. Eur Heart J (23):2493–2519. doi:10.1093/eurheartj/ehi455

  22. Herrmann J, Lerman A, Baumgart D, Volbracht L, Schulz R, von Birgelen C, Haude M, Heusch G, Erbel R (2002) Preprocedural statin medication reduces the extent of periprocedural non-Q-wave myocardial infarction. Circulation 106(17):2180–2183. doi:10.1161/01.CIR.0000037520.89770.5E

    Article  PubMed  CAS  Google Scholar 

  23. Heusch G, Kleinbongard P, Boese D, Levkau B, Haude M, Schulz R, Erbel R (2009) Coronary microembolization: from bedside to bench and back to bedside. Circulation 20:1822–1836. doi:10.1161/CIRCULATIONAHA.109.888784

    Article  Google Scholar 

  24. Higuchi Y, Iwakura K, Okamura A, Date M, Nagai H, Ozawa M, Ito H, Fujii K (2012) Effect of embolic particles during coronary interventional procedures on regional wall motion in patients with stable angina pectoris. Am J Cardiol 109(8):1142–1147. doi:10.1016/j.amjcard.2011.11.050

    Article  PubMed  Google Scholar 

  25. Hong YJ, Mintz GS, Kim SW, Lee SY, Okabe T, Pichard AD, Satler LF, Waksman R, Kent KM, Suddath WO, Weissman NJ (2009) Impact of plaque composition on cardiac troponin elevation after percutaneous coronary intervention. An ultrasoundanalysis. J Am Coll Cardiol: Cardiovascular Imaging 2:458–468. doi:10.1016/j.jcmg.2008.12.020

    Google Scholar 

  26. Ioannidis JP, Karvouni E, Katritsis DG (2003) Mortality risk conferred by small elevation of creatine kinase-MB isoenzyme after percutaneous coronary intervention. J Am Coll Cardiol 42:1406–1411. doi:10.1016/S0735-1097(03)01044-1

    Article  PubMed  CAS  Google Scholar 

  27. Jensen LO, Thayssen P, Mintz GS, Maeng M, Junker A, Galloe A, Christiansen EH, Hoffmann SK, Pedersen KE, Hansen HS, Hansen KN (2007) Intravascular ultrasound assessment of remodeling and reference segment plaque burden in type-2 diabetic patients. Eur Heart J 28(14):1759–1764. doi:10.1093/eurheartj/ehm175

    Article  PubMed  Google Scholar 

  28. Katz PS, Trask AJ, Souza-Smith FM, Hutchinson KR, Galantowicz ML, Lord KC, Stewart JA Jr, Cismowski MJ, Varner KJ, Lucchesi PA (2011) Coronary arterioles in type 2 diabetic (db/db) mice undergo a distinct pattern of remodeling associated with decreased vessel stiffness. Basic Res Cardiol 106(6):1123–1134. doi:10.1007/s00395-011-0201-0

    Article  PubMed  CAS  Google Scholar 

  29. Kleinbongard P, Konorza T, Böse D, Baars T, Haude M, Erbel R, Heusch G (2010) Lessons from human coronary aspirate. J Mol Cell Cardiol 2(4):890–896. doi:10.1016/j.yjmcc.2011.06.022

    Google Scholar 

  30. Ko YG, Jung JH, Park S, Choi E, Joung B, Hwang KC, Ha JW, Choi D, Jang Y, Chung N, Shim WH, Cho SY (2006) Inflammatory and vasoactive factors in the aspirate from the culprit coronary artery of patients with acute myocardial infarction. Int J Cardiol 112(1):66–71. doi:10.1016/j.ijcard.2005.10.005

    Article  PubMed  Google Scholar 

  31. Kong TQ, Davidson CJ, Meyers SN, Tauke JT, Parker MA, Bonow RO (1997) Prognostic implication of creatine kinase elevation following elective coronary artery interventions. JAMA 277:461–466. doi:10.1001/jama.277.6.461

    Article  PubMed  CAS  Google Scholar 

  32. Kotani J, Nanto S, Mintz GS, Kitakaze M, Ohara T, Morozumi T, Nagata S, Hori M (2002) Plaque gruel of atheromatous coronary lesion may contribute to the no reflow phenomenon in patients with acute coronary syndrome. Circulation 106:1672–1677. doi:10.1161/01.CIR.0000030189.27175.4E

    Article  PubMed  Google Scholar 

  33. Kugelmass AD, Cohen DJ, Moscucci M, Piana RN, Senerchia C, Kuntz RE, Baim DS (1994) Elevation of the creatine kinase myocardial isoform following otherwise successful coronary atherectomy and stenting. Am J Cardiol 74:748–754. doi:10.1016/0002-9149(94)90427-8

    Article  PubMed  CAS  Google Scholar 

  34. Li S, Zhong S, Zeng K, Luo Y, Zhang F, Sun X, Chen L (2010) Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Res Cardiol 105(1):139–150. doi:10.1007/s00395-009-0067-6

    Article  PubMed  CAS  Google Scholar 

  35. Lim CC, van Gaal WJ, Testa L, Cuculi F, Arnold JR, Karamitsos T, Francis JM, Petersen SE, Digby JE, Westaby S, Antoniades C, Kharbanda RK, Burrell LM, Neubauer S, Banning AP (2011) With the “universal definition,” measurement of creatine kinase-myocardial band rather than troponin allows more accurate diagnosis of periprocedural necrosis and infarction after coronary intervention. J Am Coll Cardiol 57(6):653–661. doi:10.1016/j.jacc.2010.07.058

    Article  PubMed  CAS  Google Scholar 

  36. Louvard Y, Thomas M, Dzavik V, Hildick-Smith D, Galassi AR, Pan M, Burzotta F, Zelizko M, Dudek D, Ludman P, Sheiban I, Lassen JF, Darremont O, Kastrati A, Ludwig J, Iakovou I, Brunel P, Lansky A, Meerkin D, Legrand V, Medina A, Lefèvre T (2008) Classification of coronary artery bifurcation lesions and treatments: time for a consensus! Catheter Cardiovasc Interv 71(2):175–183. doi:10.1002/ccd.21314

    Article  PubMed  Google Scholar 

  37. Markus HS, Clifton A, Buckenham T, Brown MM (1994) Carotid angioplasty: detection of embolic signals during and after the procedure. Stroke 25:2403–2406. doi:10.1161/01.STR.25.12.2403

    Article  PubMed  CAS  Google Scholar 

  38. Medina A, Suárez de Lezo J, Pan M (2006) A new classification of coronary bifurcation lesions. Rev Esp Cardiol 59(2):183. doi:10.1016/S1885-5857(06)60130-8

  39. Nassenstein K, Breuckmann F, Bucher C, Kaiser G, Konorza T, Schäfer L, Konietzka I, de Greiff A, Heusch G, Erbel R, Barkhausen J (2008) How much myocardial damage is necessary to enable detection of focal late gadolinium enhancement at cardiac MR imaging? Radiology 249(3):829–835. doi:10.1148/radiol.2493080457

    Article  PubMed  Google Scholar 

  40. Nicholls SJ, Tuzcu EM, Kalidindi S, Wolski K, Moon KW, Sipahi I, Schoenhagen P, Nissen SE (2008) Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol 52(4):255–262. doi:10.1016/j.jacc.2008.03.051

    Article  PubMed  CAS  Google Scholar 

  41. Nienhuis MB, Ottervanger JP, Bilo HJ, Dikkeschei BD, Zijlstra F (2008) Prognostic value of troponin after elective percutaneous coronary intervention: a meta-analysis. Catheter Cardiovasc Interv 71:318–324. doi:10.1002/ccd.21345

    Article  PubMed  Google Scholar 

  42. Okamura A, Ito H, Iwakura K, Kawano S, Kurotobi T, Date M, Inoue K, Ogihara T, Fujii K (2007) Detection and quantification of embolic particles during percutaneous coronary intervention to stable plaque: it correlates to coronary flow dynamics and myocardial damage. Catheter Cardiovasc Interv 69(3):425–431. doi:10.1002/ccd.20971

    Article  PubMed  Google Scholar 

  43. Park Y, Yang J, Zhang H, Chen X, Zhang C (2011) Effect of PAR2 in regulating TNF-α and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol 106:111–123. doi:10.1007/s00395-010-0129-9

    Article  PubMed  CAS  Google Scholar 

  44. Poerner TC, Kralev S, Voelker W, Sueselbeck T, Latsch A, Pfleger S, Schumacher B, Borggrefe M, Haase KK (2002) Natural history of small and medium-sized side branches after coronary stent implantation. Am Heart J 143:627–635. doi:10.1067/mhj.2002.120411

    Article  PubMed  Google Scholar 

  45. Porto I, Selvanayagam JB, Van Gaal WJ, Prati F, Cheng A, Channon K, Neubauer S, Banning AP (2006) Plaque volumen and occurrence and location of periprocedural myocardial necrosis after percutanous coronary intervention: insights from delayed-enhancement magnetic resonance imaging, thrombolysis in myocardial infarction myocardial perfusion grade analysis, and intravascular ultrasound. Circulation 114:662–669. doi:10.1161/CIRCULATIONAHA.105.593210

    Article  PubMed  Google Scholar 

  46. Radke PW, Friese K, Buhr A, Nagel B, Harland LC, Kaiser A, Remmel M, Hanrath P, Schunkert H, Hoffmann R (2006) Comparison of coronary restenosis rates in matched patients with versus without diabetes mellitus. Am J Cardiol 98(9):1218–1222. doi:10.1016/j.amjcard.2006.06.015

    Article  PubMed  Google Scholar 

  47. Reddy HK, Koshy SK, Foerst J, Sturek M (2004) Remodeling of coronary arteries in diabetic patients—an intravascular ultrasound study. Echocardiography 21:139–144. doi:10.1111/j.0742-2822.2004.03014.x

    Article  PubMed  Google Scholar 

  48. Ricciardi MJ, Wu E, Davidson CJ, Choi KM, Klocke FJ, Bonow RO, Judd RM, Kim RJ (2001) Visualization of discrete microinfarction after percutaneous coronary interventions associated with mild creatine kinase-MB elevation. Circulation 103:2780–2783. doi:10.1161/hc2301.092121

    Article  PubMed  CAS  Google Scholar 

  49. Ryan TJ, Faxon DP, Gunnar RM, Kennedy JW, King SB 3rd, Loop FD, Peterson KL, Reeves TJ, Williams DO, Winters WL Jr (1988) Guidelines for percutaneous transluminal coronary angioplasty. A report of the American College of Cardiology/American Heart Association Task Force on assessment of diagnostic and therapeutic cardiovascular procedures (subcommittee on percutaneous transluminal coronary angioplasty). Circulation 78:486–502. doi:10.1161/01.CIR.78.2.486

    Article  PubMed  CAS  Google Scholar 

  50. Selvanayagam JB, Porto I, Channon K, Petersen SE, Francis JM, Neubauer S, Banning AP (2005) Troponin elevation after percutaneous coronary intervention directly represents the extent of irreversible myocardial injury insights from cardiovascular magnetic resonance imaging. Circulation 111:1027–1032. doi:10.1161/01.CIR.0000156328.28485.AD

    Article  PubMed  CAS  Google Scholar 

  51. Serruys PW, Unger F, van Hout BA, van den Brand MJ, van Herwerden LA, van Es GA, Bonnier JJ, Simon R, Cremer J, Colombo A, Santoli C, Vandormael M, Marshall PR, Madonna O, Firth BG, Breeman A, Morel MA, Hugenholtz PG (1999) The ARTS study (Arterial Revascularization Therapies Study). Semin Interv Cardiol 4(4):209–219

    PubMed  CAS  Google Scholar 

  52. Silber S, Albertsson P, Avilés FF, Camici PG, Colombo A, Hamm C, Jørgensen E, Marco J, Nordrehaug JE, Ruzyllo W, Urban P, Stone GW, Wijns W (2005) Guidelines for percutaneous coronary interventions: the task force for percutaneous coronary interventions of the European society of cardiology. Eur Heart J 26:804–847. doi:10.1093/eurheartj/ehi138

    Article  PubMed  Google Scholar 

  53. Srinivasan M, Rihal C, Holmes DR, Prasad A (2009) Adjunctive thrombectomy and distal protection in primary percutaneous coronary intervention. Impact on microvascular perfusion and outcomes. Circulation 119:1311–1319. doi:10.1161/CIRCULATIONAHA.108.831453

    Article  PubMed  Google Scholar 

  54. Takagi T, Okura H, Kobayashi Y, Kataoka T, Taguchi H, Toda I, Tamita K, Yamamuro A, Sakanoue Y, Ito A, Yanagi S, Shimeno K, Waseda K, Yamasaki M, Fitzgerald PJ, Ikeno F, Honda Y, Yoshiyama M, Yoshikawa J (2009) A prospective, multicenter, randomized trial to assess efficacy of pioglitazone on in-stent neointimal suppression in type 2 diabetes: POPPS (Prevention of In-Stent Neointimal Proliferation by Pioglitazone Study). JACC Cardiovasc Interv 6:524–531. doi:10.1016/j.jcin.2009.04.007

    Article  Google Scholar 

  55. Takarada S, Imanishi T, Ishibashi K, Tanimoto T, Komukai K, Ino Y, Kitabata H, Kubo T, Tanaka A, Kimura K, Mizukoshi M, Akasaka T (2010) The effect of lipid and inflammatory profiles on the morphological changes of lipid-rich plaques in patients with non-ST-segment elevated acute coronary syndrome. Follow-up study by optical coherence tomography and intravascular ultrasound. J Am Coll Cardiol Intv 3:766–772. doi:10.1016/j.jcin.2010.05.001

    Google Scholar 

  56. Tanaka A, Imanishi T, Kitabata H, Kubo T, Takarada S, Tanimoto T, Kuroi A, Tsujioka H, Ikejima H, Komukai K, Kataiwa H, Okouchi K, Kashiwaghi M, Ishibashi K, Matsumoto H, Takemoto K, Nakamura N, Hirata K, Mizukoshi M, Akasaka T (2009) Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non ST-segment elevation acute coronary syndrome: an optical coherence tomography study. Eur Heart J 30:1348–1355. doi:10.1093/eurheartj/ehp122

    Article  PubMed  Google Scholar 

  57. Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction, Jaffe AS, Apple FS, Galvani M, Katus HA, Newby LK, Ravkilde J, Chaitman B, Clemmensen PM, Dellborg M, Hod H, Porela P, Underwood R, Bax JJ, Beller GA, Bonow R, Van der Wall EE, Bassand JP, Wijns W, Ferguson TB, Steg PG, Uretsky BF, Williams DO, Armstrong PW, Antman EM, Fox KA, Hamm CW, Ohman EM, Simoons ML, Poole-Wilson PA, Gurfinkel EP, Lopez-Sendon JL, Pais P, Mendis S, Zhu JR, Wallentin LC, Fernández-Avilés F, Fox KM, Parkhomenko AN, Priori SG, Tendera M, Voipio-Pulkki LM, Vahanian A, Camm AJ, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Morais J, Brener S, Harrington R, Morrow D, Lim M, Martinez-Rios MA, Steinhubl S, Levine GN, Gibler WB, Goff D, Tubaro M, Dudek D, Al-Attar N. (2007) Universal definition of myocardial infarction. Circulation 116(22):2634–2653. doi:10.1161/CIRCULATIONAHA.107.187397

    Google Scholar 

  58. Uetani T, Amano T, Ando H, Yokoi K, Arai K, Kato M, Marui N, Nanki M, Matsubara T, Ishii H, Izawa H, Murohara T (2008) The correlation between lipid volume in the target lesion, measured by integrated backscatter intravascular ultrasound, and post-procedural myocardial infarction in patients with elective stent implantation. Eur Heart 29:1714–1720. doi:10.1093/eurheartj/ehn248

    Article  Google Scholar 

  59. Voss A, Bahrmann P, Schröder R, Wagner, Werner GS, Figulla HR (2007) Automatic detection of microemboli during percutaneous coronary interventions. Ann Biomed Eng 35:2087–2094. doi:10.1007/s10439-007-9386-7

  60. Vranckx P, Cutlip DE, Mehran R, Kint PP, Silber S, Windecker S, Serruys PW (2010) Myocardial infarction adjudication in contemporary all-comer stent trials: balancing sensitivity and specificity. Addendum to the historical MI definitions used in stent studies. EuroIntervention 5(7):871–874. doi:10.4244/EIJV5I7A146

    Google Scholar 

  61. Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y (2011) The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol 106:925–952. doi:10.1007/s00395-011-0216-6

    Article  PubMed  CAS  Google Scholar 

  62. Yonetsu T, Kakuta T, Lee T, kahashi K, Yamamoto G, Iesaka Y, Fujiwara H, Isobe M (2011) Impact of plaque morphology on creatine kinase-MB elevation in patients with elective stent implantation. Int J Cardiol 146:80–85. doi:10.1016/j.ijcard.2010.06.010

    Google Scholar 

  63. Zhang H, Dellsperger KC, Zhang C (2012) The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update. Basic Res Cardiol 107(1):237. doi:10.1007/s00395-011-0237-1

    Article  PubMed  Google Scholar 

  64. Zhang H, Potter BJ, Cao JM, Zhang C (2011) Interferon-gamma induced adipose tissue inflammation is linked to endothelial dysfunction in type 2 diabetic mice. Basic Res Cardiol 106(6):1135–1145. doi:10.1007/s00395-011-0212-x

    Article  PubMed  CAS  Google Scholar 

  65. Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, Wong G, Bennett P, Shaw J, Caprio S (2007) The metabolic syndrome in children and adolescents. International Diabetes Federation Task Force on Epidemiology and Prevention of Diabetes. Lancet 369(9579):2059–2061. doi:10.1016/S0140-6736(07)60958-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the cath lab personnel of the Cardiology Division at the University of Jena for supporting the study team with their assistance by HITS measurements.

Conflict of interest

The authors have no conflict of interest related to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Otto.

Additional information

From: 1st Clinic of Medicine, Division of Cardiology, University Hospital of Jena, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otto, S., Seeber, M., Fujita, B. et al. Microembolization and myonecrosis during elective percutaneous coronary interventions in diabetic patients: an intracoronary Doppler ultrasound study with 2-year clinical follow-up. Basic Res Cardiol 107, 289 (2012). https://doi.org/10.1007/s00395-012-0289-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0289-x

Keywords

Navigation