Skip to main content

Advertisement

Log in

Inhibition of Na/K-ATPase promotes myocardial tumor necrosis factor-alpha protein expression and cardiac dysfunction via calcium/mTOR signaling in endotoxemia

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-α (TNF-α) is a major pro-inflammatory cytokine that causes cardiac dysfunction during sepsis. Na/K-ATPase regulates intracellular Ca2+, which activates mammalian target of rapamycin (mTOR), a regulator of protein synthesis. The aim of this study was to investigate the role of Na/K-ATPase/mTOR signaling in myocardial TNF-α expression during endotoxemia. Results showed that treatment with LPS decreased Na/K-ATPase activity in the myocardium in vivo and in cultured neonatal cardiomyocytes. Inhibition of Na/K-ATPase by ouabain enhanced LPS-induced myocardial TNF-α protein production, but had no effect on TNF-α mRNA expression. More importantly, ouabain further decreased in vivo cardiac function in endotoxemic mice, which was blocked by etanercept, a TNF-α antagonist. LPS-induced reduction in Na/K-ATPase activity was prevented by inhibition of PI3K, Rac1 and NADPH oxidase using LY294002, a dominant-negative Rac1 adenovirus (Ad-Rac1N17) and apocynin, respectively. To assess the role of Rac1 in Ca2+ handling, Ca2+ transients in adult cardiomyocytes from cardiomyocyte-specific Rac1 knockout (Rac1CKO) and wild-type (WT) mice were determined. LPS increased intracellular Ca2+ in WT but not in Rac1CKO cardiomyocytes. Furthermore, LPS rapidly increased mTOR phosphorylation in cardiomyocytes, which was blocked by Rac1N17 and an inhibitor of calmodulin-dependent protein kinases (CaMKs) KN93, but enhanced by ouabain. Rapamycin, an inhibitor of mTOR suppressed TNF-α protein levels without any significant effect on its mRNA expression or global protein synthesis. In conclusion, myocardial Na/K-ATPase activity is inhibited during endotoxemia via PI3K/Rac1/NADPH oxidase activation. Inhibition of Na/K-ATPase activates Ca2+/CaMK/mTOR signaling, which promotes myocardial TNF-α protein production and cardiac dysfunction during endotoxemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baker AK, Wang R, Mackman N, Luyendyk JP (2009) Rapamycin enhances LPS induction of tissue factor and tumor necrosis factor-alpha expression in macrophages by reducing IL-10 expression. Mol Immunol 46:2249–2255. doi:10.1016/j.molimm.2009.04.011

    Article  PubMed  CAS  Google Scholar 

  2. Barr DJ, Green HJ, Lounsbury DS, Rush JW, Ouyang J (2005) Na+-K+-ATPase properties in rat heart and skeletal muscle 3 mo after coronary artery ligation. J Appl Physiol 99:656–664. doi:10.1152/japplphysiol.00343.2004

    Article  PubMed  CAS  Google Scholar 

  3. Barwe SP, Jordan MC, Skay A, Inge L, Rajasekaran SA, Wolle D, Johnson CL, Neco P, Fang K, Rozengurt N, Goldhaber JI, Roos KP, Rajasekaran AK (2009) Dysfunction of ouabain-induced cardiac contractility in mice with heart-specific ablation of Na, K-ATPase beta1-subunit. J Mol Cell Cardiol 47:552–560. doi:10.1016/j.yjmcc.2009.07.018

    Article  PubMed  CAS  Google Scholar 

  4. Belosjorow S, Schulz R, Dorge H, Schade FU, Heusch G (1999) Endotoxin and ischemic preconditioning: TNF-alpha concentration and myocardial infarct development in rabbits. Am J Physiol Heart Circ Physiol 277:H2470–H2475

    CAS  Google Scholar 

  5. Burger DE, Lu X, Lei M, Xiang FL, Hammoud L, Jiang M, Wang H, Jones DL, Sims SM, Feng Q (2009) Neuronal nitric oxide synthase protects against myocardial infarction-induced ventricular arrhythmia and mortality in mice. Circulation 120:1345–1354. doi:10.1161/CIRCULATIONAHA.108.846402

    Article  PubMed  CAS  Google Scholar 

  6. Buss SJ, Muenz S, Riffel JH, Malekar P, Hagenmueller M, Weiss CS, Bea F, Bekeredjian R, Schinke-Braun M, Izumo S, Katus HA, Hardt SE (2009) Beneficial effects of mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction. J Am Coll Cardiol 54:2435–2446. doi:10.1016/j.jacc.2009.08.031

    Article  PubMed  CAS  Google Scholar 

  7. Canadian Institute for Health Information (CIHI) (2009) In focus: a national look at sepsis. In: CIHI report. Ottawa, ON, Canada

  8. Canton M, Skyschally A, Menabo R, Boengler K, Gres P, Schulz R, Haude M, Erbel R, Di Lisa F, Heusch G (2006) Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur Heart J 27:875–881. doi:10.1093/eurheartj/ehi751

    Article  PubMed  CAS  Google Scholar 

  9. Chen C, Liu Y, Zheng P (2010) Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice. J Clin Invest 120:4091–4101. doi:10.1172/JCI43873

    Article  PubMed  CAS  Google Scholar 

  10. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296–327. doi:10.1097/01.CCM.0000298158.12101.41

    Article  PubMed  Google Scholar 

  11. Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 104:653–667. doi:10.1007/s00395-009-0043-1

    Article  PubMed  CAS  Google Scholar 

  12. Dorge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker KA, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNF-alpha in contractile dysfunction. J Mol Cell Cardiol 34:51–62. doi:10.1006/jmcc.2001.1489

    Article  PubMed  Google Scholar 

  13. Figtree GA, Liu CC, Bibert S, Hamilton EJ, Garcia A, White CN, Chia KK, Cornelius F, Geering K, Rasmussen HH (2009) Reversible oxidative modification: a key mechanism of Na+–K+ pump regulation. Circ Res 105:185–193. doi:10.1161/CIRCRESAHA.109.199547

    Article  PubMed  CAS  Google Scholar 

  14. Garlie JB, Hamid T, Gu Y, Ismahil MA, Chandrasekar B, Prabhu SD (2011) Tumor necrosis factor receptor 2 signaling limits beta-adrenergic receptor-mediated cardiac hypertrophy in vivo. Basic Res Cardiol 106:1193–1205. doi:10.1007/s00395-011-0196-6

    Article  PubMed  CAS  Google Scholar 

  15. Geoghegan-Morphet N, Burger D, Lu X, Sathish V, Peng T, Sims SM, Feng Q (2007) Role of neuronal nitric oxide synthase in lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal mouse cardiomyocytes. Cardiovasc Res 75:408–416. doi:10.1016/j.cardiores.2007.03.020

    Article  PubMed  CAS  Google Scholar 

  16. Glogauer M, Marchal CC, Zhu F, Worku A, Clausen BE, Foerster I, Marks P, Downey GP, Dinauer M, Kwiatkowski DJ (2003) Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J Immunol 170:5652–5657

    PubMed  CAS  Google Scholar 

  17. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  18. Guggilam A, Cardinale JP, Mariappan N, Sriramula S, Haque M, Francis J (2011) Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide. Basic Res Cardiol 106:273–286. doi:10.1007/s00395-010-0146-8

    Article  PubMed  CAS  Google Scholar 

  19. Guzman NJ, Fang MZ, Tang SS, Ingelfinger JR, Garg LC (1995) Autocrine inhibition of Na+/K+-ATPase by nitric oxide in mouse proximal tubule epithelial cells. J Clin Invest 95:2083–2088

    Article  PubMed  CAS  Google Scholar 

  20. Haidinger M, Poglitsch M, Geyeregger R, Kasturi S, Zeyda M, Zlabinger GJ, Pulendran B, Horl WH, Saemann MD, Weichhart T (2010) A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J Immunol 185:3919–3931. doi:10.4049/jimmunol.1000296

    Article  PubMed  CAS  Google Scholar 

  21. Hammoud L, Lu X, Lei M, Feng Q (2011) Deficiency in TIMP-3 increases cardiac rupture and mortality post-myocardial infarction via EGFR signaling: beneficial effects of cetuximab. Basic Res Cardiol 106:459–471. doi:10.1007/s00395-010-0147-7

    Article  PubMed  CAS  Google Scholar 

  22. Han F, Bossuyt J, Despa S, Tucker AL, Bers DM (2006) Phospholemman phosphorylation mediates the protein kinase C-dependent effects on Na+/K+ pump function in cardiac myocytes. Circ Res 99:1376–1383. doi:10.1161/01.RES.0000251667.73461.fb

    Article  PubMed  CAS  Google Scholar 

  23. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945. doi:10.1101/gad.1212704

    Article  PubMed  CAS  Google Scholar 

  24. Heusch P, Canton M, Aker S, van de Sand A, Konietzka I, Rassaf T, Menazza S, Brodde OE, Di Lisa F, Heusch G, Schulz R (2010) The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. Br J Pharmacol 160:1408–1416. doi:10.1111/j.1476-5381.2010.00793.x

    Article  PubMed  CAS  Google Scholar 

  25. Huang L, Li H, Xie Z (1997) Ouabain-induced hypertrophy in cultured cardiac myocytes is accompanied by changes in expression of several late response genes. J Mol Cell Cardiol 29:429–437. doi:10.1006/jmcc.1996.0320

    Article  PubMed  CAS  Google Scholar 

  26. Hui AS, Bauer AL, Striet JB, Schnell PO, Czyzyk-Krzeska MF (2006) Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J 20:466–475. doi:10.1096/fj.05-5086com

    Article  PubMed  CAS  Google Scholar 

  27. Johansson M, Karlsson L, Wennergren M, Jansson T, Powell TL (2003) Activity and protein expression of Na+/K+ ATPase are reduced in microvillous syncytiotrophoblast plasma membranes isolated from pregnancies complicated by intrauterine growth restriction. J Clin Endocrinol Metab 88:2831–2837

    Article  PubMed  CAS  Google Scholar 

  28. Kleinbongard P, Schulz R, Heusch G (2011) TNF-alpha in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 16:49–69. doi:10.1007/s10741-010-9180-8

    Article  PubMed  CAS  Google Scholar 

  29. Koksel O, Ozdulger A, Tamer L, Cinel L, Ercil M, Degirmenci U, Unlu S, Kanik A (2006) Effects of caffeic acid phenethyl ester on lipopolysaccharide-induced lung injury in rats. Pulm Pharmacol Ther 19:90–95. doi:10.1016/j.pupt.2005.03.006

    Article  PubMed  CAS  Google Scholar 

  30. Lenz G, Avruch J (2005) Glutamatergic regulation of the p70S6 kinase in primary mouse neurons. J Biol Chem 280:38121–38124. doi:10.1074/jbc.C500363200

    Article  PubMed  CAS  Google Scholar 

  31. Li S, Zhong S, Zeng K, Luo Y, Zhang F, Sun X, Chen L (2010) Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Res Cardiol 105:139–150. doi:10.1007/s00395-009-0067-6

    Article  PubMed  CAS  Google Scholar 

  32. Liu X, Yao M, Li N, Wang C, Zheng Y, Cao X (2008) CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood 112:4961–4970. doi:10.1182/blood-2008-03-144022

    Article  PubMed  CAS  Google Scholar 

  33. Lupia E, Spatola T, Cuccurullo A, Bosco O, Mariano F, Pucci A, Ramella R, Alloatti G, Montrucchio G (2010) Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum. Basic Res Cardiol 105:609–620. doi:10.1007/s00395-010-0103-6

    Article  PubMed  Google Scholar 

  34. McDonough AA, Velotta JB, Schwinger RH, Philipson KD, Farley RA (2002) The cardiac sodium pump: structure and function. Basic Res Cardiol 97(Suppl 1):I19–I24

    PubMed  Google Scholar 

  35. McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S (2004) Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109:3050–3055. doi:10.1161/01.CIR.0000130641.08705.45

    Article  PubMed  CAS  Google Scholar 

  36. Mendez-Samperio P, Trejo A, Miranda E (2006) Activation of ERK1/2 and TNF-alpha production are mediated by calcium/calmodulin, and PKA signaling pathways during Mycobacterium bovis infection. J Infect 52:147–153. doi:10.1016/j.jinf.2005.02.027

    Article  PubMed  CAS  Google Scholar 

  37. Merx MW, Weber C (2007) Sepsis and the heart. Circulation 116:793–802. doi:10.1161/CIRCULATIONAHA.106.678359

    Article  PubMed  CAS  Google Scholar 

  38. Meyuhas O (2000) Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267:6321–6330

    Article  PubMed  CAS  Google Scholar 

  39. Muller-Ehmsen J, Nickel J, Zobel C, Hirsch I, Bolck B, Brixius K, Schwinger RH (2003) Longer term effects of ouabain on the contractility of rat isolated cardiomyocytes and on the expression of Ca and Na regulating proteins. Basic Res Cardiol 98:90–96. doi:10.1007/s00395-003-0396-9

    Article  PubMed  CAS  Google Scholar 

  40. Ohmori Y, Reynolds E, Hamilton TA (1991) Modulation of Na+/K+ exchange potentiates lipopolysaccharide-induced gene expression in murine peritoneal macrophages. J Cell Physiol 148:96–105. doi:10.1002/jcp.1041480112

    Article  PubMed  CAS  Google Scholar 

  41. Peng T, Lu X, Feng Q (2005) Pivotal role of gp91phox-containing NADH oxidase in lipopolysaccharide-induced tumor necrosis factor-alpha expression and myocardial depression. Circulation 111:1637–1644

    Article  PubMed  CAS  Google Scholar 

  42. Peng T, Lu X, Lei M, Moe GW, Feng Q (2003) Inhibition of p38 MAPK decreases myocardial TNF-alpha expression and improves myocardial function and survival in endotoxemia. Cardiovasc Res 59:893–900. doi:10.1016/S0008-6363(03)00509-1

    Article  PubMed  CAS  Google Scholar 

  43. Peng T, Zhang T, Lu X, Feng Q (2009) JNK1/c-fos inhibits cardiomyocyte TNF-alpha expression via a negative crosstalk with ERK and p38 MAPK in endotoxaemia. Cardiovasc Res 81:733–741. doi:10.1093/cvr/cvn336

    Article  PubMed  CAS  Google Scholar 

  44. Rosengart MR, Arbabi S, Garcia I, Maier RV (2000) Interactions of calcium/calmodulin-dependent protein kinases (CaMK) and extracellular-regulated kinase (ERK) in monocyte adherence and TNF-alpha production. Shock 13:183–189

    Article  PubMed  CAS  Google Scholar 

  45. Rui T, Feng Q, Lei M, Peng T, Zhang J, Xu M, Abel ED, Xenocostas A, Kvietys PR (2005) Erythropoietin prevents the acute myocardial inflammatory response induced by ischemia/reperfusion via induction of AP-1. Cardiovasc Res 65:719–727. doi:10.1016/j.cardiores.2004.11.019

    Article  PubMed  CAS  Google Scholar 

  46. Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31:342–348. doi:10.1016/j.tibs.2006.04.003

    Article  PubMed  CAS  Google Scholar 

  47. Sapia L, Palomeque J, Mattiazzi A, Petroff MV (2010) Na+/K+-ATPase inhibition by ouabain induces CaMKII-dependent apoptosis in adult rat cardiac myocytes. J Mol Cell Cardiol 49:459–468. doi:10.1016/j.yjmcc.2010.04.013

    Article  PubMed  CAS  Google Scholar 

  48. Song W, Lu X, Feng Q (2000) Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc Res 45:595–602. doi:10.1016/S0008-6363(99)00395-8

    Article  PubMed  CAS  Google Scholar 

  49. Song X, Kusakari Y, Xiao CY, Kinsella SD, Rosenberg MA, Scherrer-Crosbie M, Hara K, Rosenzweig A, Matsui T (2010) mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am J Physiol Cell Physiol 299:C1256–C1266. doi:10.1152/ajpcell.00338.2010

    Article  PubMed  CAS  Google Scholar 

  50. Thielmann M, Dorge H, Martin C, Belosjorow S, Schwanke U, van De Sand A, Konietzka I, Buchert A, Kruger A, Schulz R, Heusch G (2002) Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res 90:807–813. doi:10.1161/01.RES.0000014451.75415.36

    Article  PubMed  CAS  Google Scholar 

  51. Wang Q, Heimberg H, Pipeleers D, Ling Z (2008) Glibenclamide activates translation in rat pancreatic beta cells through calcium-dependent mTOR, PKA and MEK signalling pathways. Diabetologia 51:1202–1212. doi:10.1007/s00125-008-1026-8

    Article  PubMed  CAS  Google Scholar 

  52. Wang YP, Sato C, Mizoguchi K, Yamashita Y, Oe M, Maeta H (2002) Lipopolysaccharide triggers late preconditioning against myocardial infarction via inducible nitric oxide synthase. Cardiovasc Res 56:33–42. doi:10.1016/S0008-6363(02)00506-0

    Article  PubMed  CAS  Google Scholar 

  53. Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M, Stuhlmeier KM, Kolbe T, Stulnig TM, Horl WH, Hengstschlager M, Muller M, Saemann MD (2008) The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29:565–577. doi:10.1016/j.immuni.2008.08.012

    Article  PubMed  CAS  Google Scholar 

  54. Zhang C, Wu J, Xu X, Potter BJ, Gao X (2010) Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Res Cardiol 105:453–464. doi:10.1007/s00395-010-0083-6

    Article  PubMed  CAS  Google Scholar 

  55. Zhang T, Feng Q (2010) Nitric oxide and calcium signaling regulate myocardial tumor necrosis factor-alpha expression and cardiac function in sepsis. Can J Physiol Pharmacol 88:92–104. doi:10.1139/y09-097

    Article  PubMed  CAS  Google Scholar 

  56. Zhang T, Lu X, Beier F, Feng Q (2011) Rac1 activation induces tumour necrosis factor-alpha expression and cardiac dysfunction in endotoxemia. J Cell Mol Med 15:1109–1121. doi:10.1111/j.1582-4934.2010.01095.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Houxiang Hu and Mrs. Murong Liu for their excellent technical support, and Drs. Scot Kimball (Pennsylvania State University) and Peter Stathopulos (University of Toronto) for helpful discussions.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingping Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Lu, X., Li, J. et al. Inhibition of Na/K-ATPase promotes myocardial tumor necrosis factor-alpha protein expression and cardiac dysfunction via calcium/mTOR signaling in endotoxemia. Basic Res Cardiol 107, 254 (2012). https://doi.org/10.1007/s00395-012-0254-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0254-8

Keywords

Navigation