Skip to main content

Advertisement

Log in

Regulation of vascular guanylyl cyclase by endothelial nitric oxide-dependent posttranslational modification

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In isolated cells, soluble guanylyl cyclase (sGC) activity is regulated by exogenous nitric oxide (NO) via downregulation of expression and posttranslational S-nitrosylation. The aim of this study was to investigate whether such regulatory mechanism impact on endothelium-dependent vasodilation in a newly developed mouse strain carrying an endothelial-specific overexpression of eNOS (eNOS++). When compared with transgene negative controls (eNOSn), eNOS++-mice showed a 3.3-fold higher endothelial-specific aortic eNOS expression, increased vascular cGMP and VASP phosphorylation, a L-nitroarginine (L-NA)-inhibitable decrease in systolic blood pressure, but normal levels of peroxynitrite and nitrotyrosine formation, endothelium-dependent aortic vasodilation and vasodilation to NO donors. Western blot analysis for sGC showed similar protein levels of sGC-α1 and sGC-β1 subunits in eNOSn and eNOS++. In striking contrast, the activity of isolated sGC was strongly decreased in lungs of eNOS++. Semiquantitative evaluation of sGC-β1-S-nitrosylation demonstrated that this loss of sGC activity is associated with increased nitrosylation of the enzyme in eNOS++, a difference that disappeared after L-NA-treatment. Our data suggest the existence of a physiologic NO-dependent posttranslational regulation of vascular sGC in mammals involving S-nitrosylation as a key mechanism. Because this mechanism can compensate for reduction in vascular NO bioavailability, it may mask the development of endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnett DJ, McAninly J, Williams DLH (1994) Transnitrosation between nitrosothiols and thiols. J Chem Soc Perkin Trans 21131–21133. doi:10.1039/P29940001131

  2. Batenburg WW, De Vries R, Saxena PR, Danser AH (2004) L-S-Nitrosothiols: endothelium-derived hyperpolarizing factors in porcine coronary arteries? J Hypertens 22:1927–1936

    Article  PubMed  CAS  Google Scholar 

  3. Bellamy TC, Wood J, Goodwin DA, Garthwaite J (2000) Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses. Proc Natl Acad Sci USA 97:2928–2933

    Article  PubMed  CAS  Google Scholar 

  4. Brandes RP, Kim DY, Schmitz-Winnenthal FH, Amidi M, Gödecke A, Mülsch A, Busse R (2000) Increased nitrovasodilator sensitivity in endothelial nitric oxide synthase knockout mice—role of soluble guanylyl cyclase. Hypertension 35:231–236

    PubMed  CAS  Google Scholar 

  5. Buechler WA, Nakane M, Murad F (1991) Expression of soluble guanylate cyclase activity requires both enzyme subunits. Biochem Biophys Res Commun 174:351–357. doi:10.1016/0006-291X(91)90527-E

    Article  PubMed  CAS  Google Scholar 

  6. Desjardins F, Lobysheva I, Pelat M, Gallez B, Feron O, Dessy C, Balligand JL (2008) Control of blood pressure variability in caveolin-1-deficient mice: role of nitric oxide identified in vivo through spectral analysis. Cardiovasc Res 79:527–536. doi:10.1093/cvr/cvn080

    Article  PubMed  CAS  Google Scholar 

  7. Dikalov S, Fink B (2005) ESR techniques for the detection of nitric oxide in vivo and in tissues. Methods Enzymol 396:597–610. doi:10.1016/S0076-6879(05)96052-7

    Article  PubMed  CAS  Google Scholar 

  8. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452. doi:10.1126/science.1062688

    Article  PubMed  CAS  Google Scholar 

  9. Filippov G, Bloch DB, Bloch KD (1997) Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclase subunits in rat pulmonary artery smooth muscle cells. J.Clin.Invest. 100:942–948. doi:10.1172/JCI119610

    Article  PubMed  CAS  Google Scholar 

  10. Frantz S, Adamek A, Fraccarollo D, Tillmanns J, Widder JD, Dienesch C, Schafer A, Podolskaya A, Held M, Ruetten H, Ertl G, Bauersachs J (2009) The eNOS enhancer AVE 9488: a novel cardioprotectant against ischemia reperfusion injury. Basic Res Cardiol 104:773–779. doi:10.1007/s00395-009-0041-3

    Article  PubMed  CAS  Google Scholar 

  11. Gewaltig MT, Kojda G (2002) Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc Res 55:250–260. doi:10.1016/S0008-6363(02)00327-9

    Article  PubMed  CAS  Google Scholar 

  12. Godecke A, Schrader J (2000) Adaptive mechanisms of the cardiovascular system in transgenic mice—lessons from eNOS and myoglobin knockout mice. Basic Res Cardiol 95:492–498

    Article  PubMed  CAS  Google Scholar 

  13. Hamid SA, Totzeck M, Drexhage C, Thompson I, Fowkes RC, Rassaf T, Baxter GF (2010) Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res Cardiol 105:257–266. doi:10.1007/s00395-009-0058-7

    Article  PubMed  CAS  Google Scholar 

  14. Hussain MB, Hobbs AJ, MacAllister RJ (1999) Autoregulation of nitric oxide-soluble guanylate cyclase-cyclic GMP signalling in mouse thoracic aorta. Br J Pharmacol 128:1082–1088. doi:10.1038/sj.bjp.0702874

    Article  PubMed  CAS  Google Scholar 

  15. Ignarro LJ, Cirino G, Casini A, Napoli C (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 34:879–886

    Article  PubMed  CAS  Google Scholar 

  16. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197. doi:10.1038/35055104

    Article  PubMed  CAS  Google Scholar 

  17. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:L1. doi:10.1126/stke.2001.86.pl1

  18. Keefer LK, Nims RW, Davies KM, Wink DA (1996) “NONOates” (1-substituted diazen-1-ium-1, 2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms. Methods Enzymol 268:281–293. doi:10.1016/S0076-6879(96)68030-6

    Article  PubMed  CAS  Google Scholar 

  19. Kelm M, Rath J (2001) Endothelial dysfunction in human coronary circulation: relevance of the l-arginine-NO pathway. Basic Res Cardiol 96:107–127. doi:10.1007/s003950170061

    Article  PubMed  CAS  Google Scholar 

  20. Kojda G, Hambrecht R (2005) Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovasc Res 67:187–197. doi:10.1016/j.cardiores.2005.04.032

    Article  PubMed  CAS  Google Scholar 

  21. Kojda G, Kottenberg K, Hacker A, Noack E (1998) Alterations of the vascular and the myocardial guanylate cyclase/cGMP-system induced by long-term hypertension in rats. Pharm Acta Helv 73:27–35. doi:10.1016/S0031-6865(97)00044-7

    PubMed  CAS  Google Scholar 

  22. Kojda G, Laursen JB, Ramasamy S, Kent JD, Kurz S, Burchfield J, Shesely EG, Harrison DG (1999) Protein expression, vascular reactivity and soluble guanylate cyclase activity in mice lacking the endothelial nitric oxide synthase: contributions of NOS isoforms to blood pressure and heart rate control. Cardiovasc Res 42:206–213. doi:10.1016/S0008-6363(98)00315-0

    Article  PubMed  CAS  Google Scholar 

  23. Kojda G, Patzner M, Hacker A, Noack E (1998) Nitric oxide inhibits vascular bioactivation of glyceryl trinitrate. A novel mechanism to explain preferential venodilation of organic nitrates. Mol Pharmacol 53:547–554

    PubMed  CAS  Google Scholar 

  24. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2005) Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem Pharmacol 70:343–354. doi:10.1016/j.bcp.2005.05.009

    Article  PubMed  CAS  Google Scholar 

  25. Lauer N, Suvorava T, Rüther U, Jacob R, Meyer A, Harrison DG, Kojda G (2005) Critical involvement of hydrogen peroxide in exercise-induced upregulation of endothelial NO-synthase. Cardiovasc Res 65(1):254–262. doi:10.1016/j.cardiores.2004.09.010

    Article  PubMed  CAS  Google Scholar 

  26. Mayer B, Kleschyov AL, Stessel H, Russwurm M, Munzel T, Koesling D, Schmidt K (2009) Inactivation of soluble guanylate cyclase by stoichiometric S-nitrosation. Mol Pharmacol 75:886–891. doi:10.1124/mol.108.052142

    Article  PubMed  CAS  Google Scholar 

  27. Meyer DJ, Kramer H, Özer N, Coles B, Ketterer B (1994) Kinetics and equilibria of S-nitrosothiol-thiol exchange between glutathione, cysteine, penicillamines and serum albumin. FEBS Lett 345:177–180. doi:10.1016/0014-5793(94)00429-3

    Article  PubMed  CAS  Google Scholar 

  28. Moncada S, Higgs A (1993) Mechanisms of disease: the l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  29. Moncada S, Rees DD, Schulz R, Palmer RMJ (1991) Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci USA 88:2166–2170

    Article  PubMed  CAS  Google Scholar 

  30. Mullershausen F, Russwurm M, Koesling D, Friebe A (2003) The enhanced NO-induced cGMP response induced by long-term L-NAME treatment is not due to enhanced expression of NO-sensitive guanylyl cyclase. Vascul Pharmacol 40:161–165. doi:10.1016/S1537-1891(03)00049-1

    Article  PubMed  CAS  Google Scholar 

  31. Ohashi Y, Kawashima S, Hirata K, Yamashita T, Ishida T, Inoue N, Sakoda T, Kurihara H, Yazaki Y, Yokoyama M (1998) Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase (see comments). J Clin Invest 102:2061–2071. doi:10.1172/JCI4394

    Article  PubMed  CAS  Google Scholar 

  32. Oppermann M, Dao VT, Suvorava T, Bas M, Kojda G (2008) Effect of oral organic nitrates on expression and activity of vascular soluble guanylyl cyclase. Br J Pharmacol 155:335–342. doi:10.1038/bjp.2008.269

    Article  PubMed  CAS  Google Scholar 

  33. Ozaki M, Kawashima S, Yamashita T, Hirase T, Namiki M, Inoue N, Hirata K, Yasui H, Sakurai H, Yoshida Y, Masada M, Yokoyama M (2002) Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Invest 110:331–340. doi:10.1172/JCI15215

    PubMed  CAS  Google Scholar 

  34. Riego JA, Broniowska KA, Kettenhofen NJ, Hogg N (2009) Activation and inhibition of soluble guanylyl cyclase by S-nitrosocysteine: involvement of amino acid transport system L. Free Radic Biol Med 47:269–274. doi:10.1016/j.freeradbiomed.2009.04.027

    Article  PubMed  CAS  Google Scholar 

  35. Russwurm M, Koesling D (2004) NO activation of guanylyl cyclase. EMBO J 23:4443–4450. doi:10.1038/sj.emboj.7600422

    Article  PubMed  CAS  Google Scholar 

  36. Sayed N, Baskaran P, Ma X, van den Beuve A AF (2007) Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci USA 104:12312–12317. doi:10.1073/pnas.0703944104

    Article  PubMed  CAS  Google Scholar 

  37. Schmidt K, Andrew P, Schrammel A, Groschner K, Schmitz V, Kojda G, Mayer B (2001) Comparison of neuronal and endothelial isoforms of nitric oxide synthase in stably transfected HEK 293 cells. Am J Physiol Heart Circ Physiol 281:H2053–H2061

    PubMed  CAS  Google Scholar 

  38. Schultz G, Böhme E (1984) Guanylate Cyclase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, FRG, pp 379–389

    Google Scholar 

  39. Scott WS, Nakayama DK (1998) Escherichia coli lipopolysaccharide downregulates soluble guanylate cyclase in pulmonary artery smooth muscle. J Surg Res 80:309–314. doi:10.1006/jsre.1998.5442

    Article  PubMed  CAS  Google Scholar 

  40. Suvorava T, Lauer N, Kojda G (2004) Physical inactivity causes endothelial dysfunction in healthy young mice. J Am Coll Cardiol 44:1320–1327. doi:10.1016/j.jacc.2004.06.030

    Article  PubMed  CAS  Google Scholar 

  41. Szelid Z, Pokreisz P, Liu X, Vermeersch P, Marsboom G, Gillijns H, Pellens M, Verbeken E, Van de WF, Collen D, Janssens SP (2010) Cardioselective nitric oxide synthase 3 gene transfer protects against myocardial reperfusion injury. Basic Res Cardiol 105:169–179. doi:10.1007/s00395-009-0077-4

    Google Scholar 

  42. Weber M, Lauer N, Mulsch A, Kojda G (2001) The effect of peroxynitrite on the catalytic activity of soluble guanylyl cyclase. Free Radic Biol Med 31:1360–1367. doi:10.1016/S0891-5849(01)00706-7

    Article  PubMed  CAS  Google Scholar 

  43. Yamashita T, Kawashima S, Ohashi Y, Ozaki M, Rikitake Y, Inoue N, Hirata K, Akita H, Yokoyama M (2000) Mechanisms of reduced nitric oxide/cGMP-mediated vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. Hypertension 36:97–102

    PubMed  CAS  Google Scholar 

  44. Zhao YY, Zhao YD, Mirza MK, Huang JH, Potula HH, Vogel SM, Brovkovych V, Yuan JX, Wharton J, Malik AB (2009) Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. J Clin Invest 119:2009–2018. doi:10.1172/JCI33338

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Forschungskommission of the Heinrich-Heine-Universität Düsseldorf (Project 9772 109 to G.K., and project 9772 345 to T.S.).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Kojda.

Additional information

M. Oppermann and T. Suvorava contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oppermann, M., Suvorava, T., Freudenberger, T. et al. Regulation of vascular guanylyl cyclase by endothelial nitric oxide-dependent posttranslational modification. Basic Res Cardiol 106, 539–549 (2011). https://doi.org/10.1007/s00395-011-0160-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0160-5

Keywords

Navigation