Skip to main content
Log in

STAT3α interacts with nuclear GSK3beta and cytoplasmic RISK pathway and stabilizes rhythm in the anoxic-reoxygenated embryonic heart

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Activation of the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway is known to play a key role in cardiogenesis and to afford cardioprotection against ischemia–reperfusion in adult. However, involvement of JAK2/STAT3 pathway and its interaction with other signaling pathways in developing heart transiently submitted to anoxia remains to be explored. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (80 min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor AG490 or the PhosphoInositide-3-Kinase (PI3K)/Akt inhibitor LY-294002. Time course of phosphorylation of STAT3αtyrosine705 and Reperfusion Injury Salvage Kinase (RISK) proteins [PI3K, Akt, Glycogen Synthase Kinase 3beta (GSK3beta), Extracellular signal-Regulated Kinase 2 (ERK2)] was determined in homogenate and in enriched nuclear and cytoplasmic fractions of the ventricle. STAT3 DNA-binding was determined. The chrono-, dromo- and inotropic disturbances were also investigated by electrocardiogram and mechanical recordings. Phosphorylation of STAT3αtyr705 was increased by reoxygenation, reduced (~50%) by MPG or AG490 but not affected by LY-294002. STAT3 and GSK3beta were detected both in nuclear and cytoplasmic fractions while PI3K, Akt and ERK2 were restricted to cytoplasm. Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA-binding. AG490 decreased the reoxygenation-induced phosphorylation of Akt and ERK2 and phosphorylation/inhibition of GSK3beta in the nucleus, exclusively. Inhibition of JAK2/STAT3 delayed recovery of atrial rate, worsened variability of cardiac cycle length and prolonged arrhythmias as compared to control hearts. Thus, besides its nuclear translocation without transcriptional activity, oxyradicals-activated STAT3α can rapidly interact with RISK proteins present in nucleus and cytoplasm, without dual interaction, and reduce the anoxia–reoxygenation-induced arrhythmias in the embryonic heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ananthakrishnan R, Hallam K, Li Q, Ramasamy R (2005) JAK-STAT pathway in cardiac ischemic stress. Vascul Pharmacol 43:353–356. doi:10.1016/j.vph.2005.08.020

    Article  PubMed  CAS  Google Scholar 

  2. Boengler K, Heusch G, Schulz R (2010) Mitochondria in postconditioning. Antioxid Redox Signal 2010 Sep 29. [epub ahead of print] doi:10.1089/ars.2010.3309

  3. Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120:172–185. doi:10.1016/j.pharmthera.2008.08.002

    Article  PubMed  CAS  Google Scholar 

  4. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. doi:10.1007/s00395-010-0124-1

    Article  PubMed  CAS  Google Scholar 

  5. Bolli R, Dawn B, Xuan YT (2003) Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc Med 13:72–79. doi:S105017380200230X

    Article  PubMed  CAS  Google Scholar 

  6. Bruchez P, Sarre A, Kappenberger L, Raddatz E (2008) The L-Type Ca+ and KATP channels may contribute to pacing-induced protection against anoxia–reoxygenation in the embryonic heart model. J Cardiovasc Electrophysiol 19:1196–1202. doi:10.1111/j.1540-8167.2008.01218.x

    Article  PubMed  Google Scholar 

  7. Burton GJ, Jaunaiux E (2001) Maternal vascularisation of the human placenta: does the embryo develop in a hypoxic environment? Gynecol Obstet Fertil 29:503–508. doi:10.1016/S1297-9589(01)00179-5

    Article  PubMed  CAS  Google Scholar 

  8. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159. doi:10.1006/abio.1987.99990003-2697(87)90021-2

    Article  PubMed  CAS  Google Scholar 

  9. Dewilde S, Vercelli A, Chiarle R, Poli V (2008) Of alphas and betas: distinct and overlapping functions of STAT3 isoforms. Front Biosci 13:6501–6514. doi:10.2741/3170

    Article  PubMed  CAS  Google Scholar 

  10. Foshay K, Rodriguez G, Hoel B, Narayan J, Gallicano GI (2005) JAK2/STAT3 directs cardiomyogenesis within murine embryonic stem cells in vitro. Stem Cells 23:530–543. doi:10.1634/stemcells.2004-0293

    Article  PubMed  CAS  Google Scholar 

  11. Fuglesteg BN, Suleman N, Tiron C, Kanhema T, Lacerda L, Andreasen TV, Sack MN, Jonassen AK, Mjos OD, Opie LH, Lecour S (2008) Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion. Basic Res Cardiol 103:444–453. doi:10.1007/s00395-008-0728-x

    Article  PubMed  CAS  Google Scholar 

  12. Gardier S, Pedretti S, Sarre A, Raddatz E (2010) Transient anoxia and oxyradicals induce a region-specific activation of MAPKs in the embryonic heart. Mol Cell Biochem 340:239–247. doi:10.1007/s11010-010-0423-8

    Google Scholar 

  13. Goodman MD, Koch SE, Fuller-Bicer GA, Butler KL (2008) Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am J Physiol Heart Circ Physiol 295:H1649–H1656. doi:10.1152/ajpheart.00692.2008

    Article  PubMed  CAS  Google Scholar 

  14. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324:1713–1716. doi:10.1126/science.1171721

    Article  PubMed  CAS  Google Scholar 

  15. Gross ER, Hsu AK, Gross GJ (2006) The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3 beta. Am J Physiol Heart Circ Physiol 291:H827–H834. doi:10.1152/ajpheart.00003.2006

    Article  PubMed  CAS  Google Scholar 

  16. Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92. doi:10.1002/aja.1001950404

    Article  Google Scholar 

  17. Hausenloy DJ, Lecour S, Yellon DM (2010) RISK and SAFE pro-survival signalling pathways in ischaemic postconditioning: two sides of the same coin. Antioxid Redox Signal 2010 Oct 26 [epub ahead of print]. doi:10.1089/ars.2010.3360

  18. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253. doi:10.1016/j.cardiores.2006.01.017

    Article  PubMed  CAS  Google Scholar 

  19. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  20. Imada K, Leonard WJ (2000) The Jak-STAT pathway. Mol Immunol 37:1–11. doi:S0161589000000183

    Article  PubMed  CAS  Google Scholar 

  21. Jensen A, Garnier Y, Berger R (1999) Dynamics of fetal circulatory responses to hypoxia and asphyxia. Eur J Obstet Gynecol Reprod Biol 84:155–172. doi:S030121159800325X

    Article  PubMed  CAS  Google Scholar 

  22. Kelly RF, Lamont KT, Somers S, Hacking D, Lacerda L, Thomas P, Opie LH, Lecour S (2010) Ethanolamine is a novel STAT-3 dependent cardioprotective agent. Basic Res Cardiol 105:763–770. doi:10.1007/s00395-010-0125-0

    Article  PubMed  CAS  Google Scholar 

  23. Ko ML, Shi L, Grushin K, Nigussie F, Ko GY (2010) Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol Int 27:1673–1696. doi:10.3109/07420528.2010.514631

    Article  PubMed  CAS  Google Scholar 

  24. Kurdi M, Booz GW (2007) Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J Cardiovasc Pharmacol 50:126–141. doi:10.1097/FJC.0b013e318068dd4900005344-200708000-00005

    Article  PubMed  CAS  Google Scholar 

  25. Lacerda L, McCarthy J, Mungly SF, Lynn EG, Sack MN, Opie LH, Lecour S (2010) TNFalpha protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 105:751–762. doi:10.1007/s00395-010-0113-4

    Article  PubMed  CAS  Google Scholar 

  26. Lacerda L, Somers S, Opie LH, Lecour S (2009) Ischemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 84:201–208. doi:10.1093/cvr/cvp274

    Article  PubMed  CAS  Google Scholar 

  27. Levrand S, Pesse B, Feihl F, Waeber B, Pacher P, Rolli J, Schaller MD, Liaudet L (2005) Peroxynitrite is a potent inhibitor of NF-{kappa}B activation triggered by inflammatory stimuli in cardiac and endothelial cell lines. J Biol Chem 280:34878–34887. doi:10.1074/jbc.M501977200

    Article  PubMed  CAS  Google Scholar 

  28. Lim CP, Cao X (2006) Structure, function, and regulation of STAT proteins. Mol Biosyst 2:536–550. doi:10.1039/b606246f

    Article  PubMed  CAS  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262S1046-2023(01)91262-9

    Article  PubMed  CAS  Google Scholar 

  30. Lu Y, Zhou J, Xu C, Lin H, Xiao J, Wang Z, Yang B (2008) JAK/STAT and PI3 K/AKT pathways form a mutual transactivation loop and afford resistance to oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem 21:305–314. doi:10.1159/000129389

    Article  PubMed  CAS  Google Scholar 

  31. Maltepe E, Simon MC (1998) Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J Mol Med 76:391–401. doi:10.1007/s001090050231

    Article  PubMed  CAS  Google Scholar 

  32. Marks F, Klingmüller U, Müller-Decker K (2009) Cellular signal processing. Garland Science, New York, pp 194–196

  33. McCormick J, Barry SP, Sivarajah A, Stefanutti G, Townsend PA, Lawrence KM, Eaton S, Knight RA, Thiemermann C, Latchman DS, Stephanou A (2006) Free radical scavenging inhibits STAT phosphorylation following in vivo ischemia/reperfusion injury. Faseb J 20:2115–2117. doi:10.1096/fj.06-6188fje

    Article  PubMed  CAS  Google Scholar 

  34. Meares GP, Jope RS (2007) Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis. J Biol Chem 282:16989–17001. doi:10.1074/jbc.M700610200

    Article  PubMed  CAS  Google Scholar 

  35. Miyamoto S, Rubio M, Sussman MA (2009) Nuclear and mitochondrial signalling Akts in cardiomyocytes. Cardiovasc Res 82:272–285. doi:10.1093/cvr/cvp087

    Article  PubMed  CAS  Google Scholar 

  36. Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, Osugi T, Izumi M, Oshima Y, Nakaoka Y, Hirota H, Kishimoto T, Yamauchi-Takihara K (2001) Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104:979–981. doi:10.1161/hc3401.095947

    Article  PubMed  CAS  Google Scholar 

  37. Negoro S, Kunisada K, Tone E, Funamoto M, Oh H, Kishimoto T, Yamauchi-Takihara K (2000) Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res 47:797–805. doi:S0008-6363(00)00138-3

    Article  PubMed  CAS  Google Scholar 

  38. Pantos C, Xinaris C, Mourouzis I, Malliopoulou V, Kardami E, Cokkinos DV (2007) Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 297:65–72. doi:10.1007/s11010-006-9323-3

    Article  PubMed  CAS  Google Scholar 

  39. Raddatz E, Gardier S, Sarre A (2006) Physiopathology of the embryonic heart (with special emphasis on hypoxia and reoxygenation). Ann Cardiol Angeiol (Paris) 55:79–89. doi:10.1016/j.ancard.2006.02.007

    Article  CAS  Google Scholar 

  40. Raddatz E, Thomas AC, Sarre A, Benathan M (2010) Differential contribution of mitochondria, NADPH-oxidases and glycolysis to region-specific oxidant stress in the anoxic-reoxygenated embryonic heart. Am J Physiol Heart Circ Physiol 2010 Dec 30 [epub ahead of print]. doi:10.1152/ajpheart.00827.2010

  41. Romano R, Rochat AC, Kucera P, De Ribaupierre Y, Raddatz E (2001) Oxidative and glycogenolytic capacities within the developing chick heart. Pediatr Res 49:363–372. doi:0031-3998/01/4903-0363

    Article  PubMed  CAS  Google Scholar 

  42. Rubio M, Avitabile D, Fischer K, Emmanuel G, Gude N, Miyamoto S, Mishra S, Schaefer EM, Brown JH, Sussman MA (2009) Cardioprotective stimuli mediate phosphoinositide 3-kinase and phosphoinositide dependent kinase 1 nuclear accumulation in cardiomyocytes. J Mol Cell Cardiol 47:96–103. doi:10.1016/j.yjmcc.2009.02.022

    Article  PubMed  CAS  Google Scholar 

  43. Sarre A, Gardier S, Maurer F, Bonny C, Raddatz E (2008) Modulation of the c-Jun N-terminal kinase activity in the embryonic heart in response to anoxia–reoxygenation: involvement of the Ca2+ and mitoKATP channels. Mol Cell Biochem 313:133–138. doi:10.1007/s11010-008-9750-4

    Article  PubMed  CAS  Google Scholar 

  44. Sarre A, Lange N, Kucera P, Raddatz E (2005) mitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways. Am J Physiol Heart Circ Physiol 288:H1611–H1619. doi:10.1152/ajpheart.00942.2004

    Article  PubMed  CAS  Google Scholar 

  45. Sarre A, Maury P, Kucera P, Kappenberger L, Raddatz E (2006) Arrhythmogenesis in the developing heart during anoxia–reoxygenation and hypothermia–rewarming: an in vitro model. J Cardiovasc Electrophysiol 17:1350–1359. doi:10.1111/j.1540-8167.2006.00637.x

    Article  PubMed  Google Scholar 

  46. Sarre A, Pedretti S, Gardier S, Raddatz E (2010) Specific inhibition of HCN channels slows rhythm differently in atria, ventricle and outflow tract and stabilizes conduction in the anoxic-reoxygenated embryonic heart model. Pharmacol Res 61:85–91. doi:10.1016/j.phrs.2009.09.007

    Article  PubMed  CAS  Google Scholar 

  47. Schaefer TS, Sanders LK, Park OK, Nathans D (1997) Functional differences between Stat3alpha and Stat3beta. Mol Cell Biol 17:5307–5316. doi:0270-7306/97/$04.0010

    PubMed  CAS  Google Scholar 

  48. Sedmera D, Kucera P, Raddatz E (2002) Developmental changes in cardiac recovery from anoxia–reoxygenation. Am J Physiol Regul Integr Comp Physiol 283:R379–R388. doi:10.1152/ajpregu.00534.2001

    PubMed  CAS  Google Scholar 

  49. Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258:319–337. doi:10.1002/(SICI)1097-0185(20000401)258:4<319:AID-AR1>3.0.CO;2-O

    Article  PubMed  CAS  Google Scholar 

  50. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  CAS  Google Scholar 

  51. Stephanou A, Brar BK, Knight RA, Latchman DS (2000) Opposing actions of STAT-1 and STAT-3 on the Bcl-2 and Bcl-x promoters. Cell Death Differ 7:329–330. doi:10.1038/sj.cdd.4400656

    Article  PubMed  CAS  Google Scholar 

  52. Suleman N, Somers S, Smith R, Opie LH, Lecour S (2008) Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res 79:127–133. doi:10.1093/cvr/cvn067

    Article  PubMed  CAS  Google Scholar 

  53. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 94:3801–3804. doi:0027-8424y97y943801-4$2.00y0

    Article  PubMed  CAS  Google Scholar 

  54. Tenthorey D, de Ribaupierre Y, Kucera P, Raddatz E (1998) Effects of verapamil and ryanodine on activity of the embryonic chick heart during anoxia and reoxygenation. J Cardiovasc Pharmacol 31:195–202. doi:00005344-199802000-00004

    Article  PubMed  CAS  Google Scholar 

  55. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797. doi:10.1126/science.1164551

    Article  PubMed  CAS  Google Scholar 

  56. Wen Z, Zhong Z, Darnell JE Jr (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241–250. doi:0092-8674(95)90311-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Stéphany Gardier, Dr Noureddine Loukili, Dr Joëlle Rolli and Dr Alexandre Sarre for their advices, Anne-Catherine Thomas for her skillful technical assistance and Dr Antoinette Defaux for providing the histone H1 antibody. This work was supported by the Swiss National Science Foundation, [3100A0-105901].

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Pedretti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedretti, S., Raddatz, E. STAT3α interacts with nuclear GSK3beta and cytoplasmic RISK pathway and stabilizes rhythm in the anoxic-reoxygenated embryonic heart. Basic Res Cardiol 106, 355–369 (2011). https://doi.org/10.1007/s00395-011-0152-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0152-5

Keywords

Navigation