Skip to main content
Log in

C-kit+ CD45− cells found in the adult human heart represent a population of endothelial progenitor cells

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Although numerous reports support the existence of stem cells in the adult heart, few studies have been conducted using human cardiac tissue. Therefore, cells from human cardiac atrial biopsies were analyzed regarding progenitor properties. Expression of stem cell markers was analyzed using fluorescence-activated cell sorting. This identified a small population of C-kit+ cells, which could be further subdivided based on expression of CD45. The C-kit+ CD45+ population was determined to be of mast cell identity, while the C-kit+ CD45− population expressed mRNA of the endothelial lineage. Since the number of cells obtainable from biopsies was limited, a comparison between directly isolated and monolayer and explant cultured cells, respectively, was carried out. While both cultures retained a small population of mast cells, only monolayer culture produced a stable and relatively high percentage of C-kit+ CD45− cells. This population was found to co-express endothelial progenitor cell markers such as CD31, CD34, CXCR4, and FLK-1. The mRNA expression profile was similar to the one from directly isolated cells. When sorted cells were cultured in endothelial differentiation medium, the C-kit+ CD45− population retained its expression of endothelial markers to a large extent, but downregulated progenitor markers, indicating further differentiation into endothelial cells. We have confirmed that the human cardiac atrium contains a small C-kit+ CD45− population expressing markers commonly found on endothelial progenitor cells. The existence of an endothelial progenitor population within the heart might have future implications for developing methods of inducing neovascularization after myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, Fleming I, Busse R, Zeiher AM, Dimmeler S (2003) Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032

    Article  PubMed  Google Scholar 

  2. Bamezai A (2004) Mouse Ly-6 proteins and their extended family: markers of cell differentiation and regulators of cell signaling. Arch Immunol Ther Exp 52:255–266

    CAS  Google Scholar 

  3. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073

    Article  CAS  PubMed  Google Scholar 

  4. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  PubMed  Google Scholar 

  5. Castaldo C, Di Meglio F, Nurzynska D, Romano G, Maiello C, Bancone C, Muller P, Bohm M, Cotrufo M, Montagnani S (2008) CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells 26:1723–1731

    Article  CAS  PubMed  Google Scholar 

  6. Das AV, James J, Zhao X, Rahnenfuhrer J, Ahmad I (2004) Identification of c-Kit receptor as a regulator of adult neural stem cells in the mammalian eye: interactions with Notch signaling. Dev Biol 273:87–105

    Article  CAS  PubMed  Google Scholar 

  7. De Falco E, Porcelli D, Torella AR, Straino S, Iachininoto MG, Orlandi A, Truffa S, Biglioli P, Napolitano M, Capogrossi MC, Pesce M (2004) SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104:3472–3482

    Article  PubMed  Google Scholar 

  8. Doyle B, Sorajja P, Hynes B, Kumar AH, Araoz PA, Stalboerger PG, Miller D, Reed C, Schmeckpeper J, Wang S, Liu C, Terzic A, Kruger D, Riederer S, Caplice NM (2008) Progenitor cell therapy in a porcine acute myocardial infarction model induces cardiac hypertrophy, mediated by paracrine secretion of cardiotrophic factors including TGFbeta1. Stem Cells Dev 17:941–951

    Article  CAS  PubMed  Google Scholar 

  9. Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW, Emmrich F, Kluge R, Kendziorra K, Sabri O, Schuler G, Hambrecht R (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 97:756–762

    Article  CAS  PubMed  Google Scholar 

  10. Friedrich EB, Werner C, Walenta K, Bohm M, Scheller B (2009) Role of extracellular signal-regulated kinase for endothelial progenitor cell dysfunction in coronary artery disease. Basic Res Cardiol 104:613–620

    Article  CAS  PubMed  Google Scholar 

  11. Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Luthra PM (2006) Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells Dev 15:305–313

    Article  CAS  PubMed  Google Scholar 

  12. George J, Goldstein E, Abashidze S, Deutsch V, Shmilovich H, Finkelstein A, Herz I, Miller H, Keren G (2004) Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J 25:1003–1008

    Article  CAS  PubMed  Google Scholar 

  13. Goumans MJ, de Boer TP, Smits AM, van Laake LW, van Vliet P, Metz CH, Korfage TH, Kats KP, Hochstenbach R, Pasterkamp G, Verhaar MC, van der Heyden MA, de Kleijn D, Mummery CL, van Veen TA, Sluijter JP, Doevendans PA (2008) TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 1:138–149

    Article  Google Scholar 

  14. Gruh I, Beilner J, Blomer U, Schmiedl A, Schmidt-Richter I, Kruse ML, Haverich A, Martin U (2006) No evidence of transdifferentiation of human endothelial progenitor cells into cardiomyocytes after coculture with neonatal rat cardiomyocytes. Circulation 113:1326–1334

    Article  CAS  PubMed  Google Scholar 

  15. Hauswirth AW, Florian S, Schernthaner GH, Krauth MT, Sonneck K, Sperr WR, Valent P (2006) Expression of cell surface antigens on mast cells: mast cell phenotyping. Methods Mol Biol 315:77–90

    PubMed  Google Scholar 

  16. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189

    Article  CAS  PubMed  Google Scholar 

  17. Hristov M, Weber C (2006) The therapeutic potential of progenitor cells in ischemic heart disease—past, present and future. Basic Res Cardiol 101:1–7

    Article  PubMed  Google Scholar 

  18. Kaminski A, Ma N, Donndorf P, Lindenblatt N, Feldmeier G, Ong LL, Furlani D, Skrabal CA, Liebold A, Vollmar B, Steinhoff G (2008) Endothelial NOS is required for SDF-1alpha/CXCR4-mediated peripheral endothelial adhesion of C-kit+ bone marrow stem cells. Lab Invest 88:58–69

    Article  CAS  PubMed  Google Scholar 

  19. Katayama N, Shih JP, Nishikawa S, Kina T, Clark SC, Ogawa M (1993) Stage-specific expression of c-kit protein by murine hematopoietic progenitors. Blood 82:2353–2360

    CAS  PubMed  Google Scholar 

  20. Keymel S, Kalka C, Rassaf T, Yeghiazarians Y, Kelm M, Heiss C (2008) Impaired endothelial progenitor cell function predicts age-dependent carotid intimal thickening. Basic Res Cardiol 103:582–586

    Article  PubMed  Google Scholar 

  21. Khoo CP, Valorani MG, Brittan M, Alison MR, Warnes G, Johansson U, Hawa M, Pozzilli P (2009) Characterization of endothelial progenitor cells in the NOD mouse as a source for cell therapies. Diabetes Metab Res Rev 25:89–93

    Article  PubMed  Google Scholar 

  22. Kliche S, Waltenberger J (2001) VEGF receptor signaling and endothelial function. IUBMB Life 52:61–66

    Article  CAS  PubMed  Google Scholar 

  23. Kraling BM, Bischoff J (1998) A simplified method for growth of human microvascular endothelial cells results in decreased senescence and continued responsiveness to cytokines and growth factors. In Vitro Cell Dev Biol Anim 34:308–315

    Article  CAS  PubMed  Google Scholar 

  24. Kubo H, Jaleel N, Kumarapeli A, Berretta RM, Bratinov G, Shan X, Wang H, Houser SR, Margulies KB (2008) Increased cardiac myocyte progenitors in failing human hearts. Circulation 118:649–657

    Article  PubMed  Google Scholar 

  25. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  CAS  PubMed  Google Scholar 

  26. Liang SX, Tan TY, Gaudry L, Chong B (2010) Differentiation and migration of Sca1+/CD31- cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol 138:40–49

    Article  PubMed  Google Scholar 

  27. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77

    Article  CAS  PubMed  Google Scholar 

  28. Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Bohm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102:8966–8971

    Article  CAS  PubMed  Google Scholar 

  29. Lyngbaek S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102:101–114

    Article  PubMed  Google Scholar 

  30. Marsboom G, Pokreisz P, Gheysens O, Vermeersch P, Gillijns H, Pellens M, Liu X, Collen D, Janssens S (2008) Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells 26:1017–1026

    Article  PubMed  Google Scholar 

  31. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391

    Article  CAS  PubMed  Google Scholar 

  32. McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, Nilsson SK, Simmons PJ, Bertoncello I (2009) Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells 27:623–633

    Article  CAS  PubMed  Google Scholar 

  33. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    Article  CAS  PubMed  Google Scholar 

  34. Munoz-Martinez F, Lu P, Cortes-Selva F, Perez-Victoria JM, Jimenez IA, Ravelo AG, Sharom FJ, Gamarro F, Castanys S (2004) Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance. Cancer Res 64:7130–7138

    Article  CAS  PubMed  Google Scholar 

  35. Nakao-Hayashi J, Ito H, Kanayasu T, Morita I, Murota S (1992) Stimulatory effects of insulin and insulin-like growth factor I on migration and tube formation by vascular endothelial cells. Atherosclerosis 92:141–149

    Article  CAS  PubMed  Google Scholar 

  36. Panchision DM, Chen HL, Pistollato F, Papini D, Ni HT, Hawley TS (2007) Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells 25:1560–1570

    Article  CAS  PubMed  Google Scholar 

  37. Pesce M, Scholer HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19:271–278

    Article  CAS  PubMed  Google Scholar 

  38. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61

    Article  CAS  PubMed  Google Scholar 

  39. Pfister O, Oikonomopoulos A, Sereti KI, Sohn RL, Cullen D, Fine GC, Mouquet F, Westerman K, Liao R (2008) Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res 103:825–835

    Article  CAS  PubMed  Google Scholar 

  40. Pouly J, Bruneval P, Mandet C, Proksch S, Peyrard S, Amrein C, Bousseaux V, Guillemain R, Deloche A, Fabiani JN, Menasche P (2008) Cardiac stem cells in the real world. J Thorac Cardiovasc Surg 135:673–678

    Article  PubMed  Google Scholar 

  41. Relou IA, Damen CA, van der Schaft DW, Groenewegen G, Griffioen AW (1998) Effect of culture conditions on endothelial cell growth and responsiveness. Tissue Cell 30:525–530

    Article  CAS  PubMed  Google Scholar 

  42. Schober A, Karshovska E, Zernecke A, Weber C (2006) SDF-1alpha-mediated tissue repair by stem cells: a promising tool in cardiovascular medicine? Trends Cardiovasc Med 16:103–108

    Article  CAS  PubMed  Google Scholar 

  43. Schuh A, Liehn EA, Sasse A, Hristov M, Sobota R, Kelm M, Merx MW, Weber C (2008) Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol 103:69–77

    Article  PubMed  Google Scholar 

  44. Shantsila E, Watson T, Lip GY (2007) Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 49:741–752

    Article  CAS  PubMed  Google Scholar 

  45. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779

    Article  CAS  PubMed  Google Scholar 

  46. Shmelkov SV, St Clair R, Lyden D, Rafii S (2005) AC133/CD133/Prominin-1. Int J Biochem Cell Biol 37:715–719

    Article  CAS  PubMed  Google Scholar 

  47. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marban E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    Article  PubMed  Google Scholar 

  48. Smits AM, van Vliet P, Metz CH, Korfage T, Sluijter JP, Doevendans PA, Goumans MJ (2009) Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc 4:232–243

    Article  CAS  PubMed  Google Scholar 

  49. Sperr WR, Bankl HC, Mundigler G, Klappacher G, Grossschmidt K, Agis H, Simon P, Laufer P, Imhof M, Radaszkiewicz T, Glogar D, Lechner K, Valent P (1994) The human cardiac mast cell: localization, isolation, phenotype, and functional characterization. Blood 84:3876–3884

    CAS  PubMed  Google Scholar 

  50. Stellos K, Langer H, Daub K, Schoenberger T, Gauss A, Geisler T, Bigalke B, Mueller I, Schumm M, Schaefer I, Seizer P, Kraemer BF, Siegel-Axel D, May AE, Lindemann S, Gawaz M (2008) Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 117:206–215

    Article  CAS  PubMed  Google Scholar 

  51. Takamiya M, Okigaki M, Jin D, Takai S, Nozawa Y, Adachi Y, Urao N, Tateishi K, Nomura T, Zen K, Ashihara E, Miyazaki M, Tatsumi T, Takahashi T, Matsubara H (2006) Granulocyte colony-stimulating factor-mobilized circulating c-Kit+/FLK-1+ progenitor cells regenerate endothelium and inhibit neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol 26:751–757

    Article  CAS  PubMed  Google Scholar 

  52. Tateishi K, Ashihara E, Honsho S, Takehara N, Nomura T, Takahashi T, Ueyama T, Yamagishi M, Yaku H, Matsubara H, Oh H (2007) Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling. Biochem Biophys Res Commun 352:635–641

    Article  CAS  PubMed  Google Scholar 

  53. Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, Gillebert TC, Plum J, Vandekerckhove B (2007) Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 27:1572–1579

    Article  CAS  PubMed  Google Scholar 

  54. van Vliet P, Roccio M, Smits AM, van Oorschot AA, Metz CH, van Veen TA, Sluijter JP, Doevendans PA, Goumans MJ (2008) Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Neth Heart J 16:163–169

    PubMed  Google Scholar 

  55. Werner N, Wassmann S, Ahlers P, Schiegl T, Kosiol S, Link A, Walenta K, Nickenig G (2007) Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol 102:565–571

    Article  PubMed  Google Scholar 

  56. Xiao Q, Kiechl S, Patel S, Oberhollenzer F, Weger S, Mayr A, Metzler B, Reindl M, Hu Y, Willeit J, Xu Q (2007) Endothelial progenitor cells, cardiovascular risk factors, cytokine levels and atherosclerosis—results from a large population-based study. PLoS One 2:e975

    Article  PubMed  Google Scholar 

  57. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328

    Article  CAS  PubMed  Google Scholar 

  58. Yang C, Zhang ZH, Li ZJ, Yang RC, Qian GQ, Han ZC (2004) Enhancement of neovascularization with cord blood CD133+ cell-derived endothelial progenitor cell transplantation. Thromb Haemost 91:1202–1212

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marion Walser for excellent technical assistance, Linda Thimour-Bergström and Christine Roman-Emanuel for skilful handling of the biopsies, and all members of the heart research team for valuable discussions. This work was supported by grants from the Swedish Heart-Lung Foundation, AstraZeneca, the Inga-Britt and Arne Lundberg Research Foundation, the Swedish Research Council grant no. 2005-75444 and ALF/LUA Research Grant from the Sahlgrenska University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Asp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandstedt, J., Jonsson, M., Lindahl, A. et al. C-kit+ CD45− cells found in the adult human heart represent a population of endothelial progenitor cells. Basic Res Cardiol 105, 545–556 (2010). https://doi.org/10.1007/s00395-010-0088-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0088-1

Keywords

Navigation