Skip to main content

Advertisement

Log in

The metabolic modulators, Etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Shifting substrate oxidation in heart muscle from fatty acids to glucose (substrate-switch) may improve contractile function in heart failure. We tested whether application of two agents (etomoxir and NVP-LAB121) capable of inducing a substrate-switch reverts the onset of heart failure in rats with chronic pressure-overload. Hypertrophy was induced by aortic banding in rats for 1 or 15 weeks. Rats were treated for 10 days with the CPT-1-inhibitor etomoxir [29.5 μmol/(kg day)] or with NVP-LAB121 [60 μmol/(kg day)], a pyruvate-dehydrogenase-kinase-inhibitor, before assessment by echocardiography and perfusion as isolated working hearts. We also analyzed PDH- and CPT1-activity and expression of α- and β-MHC by RT-PCR. Aortic banding increased heart-to-body-weight-ratio (g/kg) from 3.44 ± 0.26 to 4.14 ± 0.48 after 1 week and from 2.80 ± 0.21 to 6.54 ± 0.26 after 15 weeks. Ejection fraction was impaired after 15 weeks (57 ± 11 vs. 73 ± 8%, P < 0.05) and rats exhibited signs of heart failure. Total PDH activity was the same in all groups. CPT-1 activity was unchanged after 1 week but decreased after 15 weeks (P < 0.01). Neither etomoxir nor NVP-LAB121 affected cardiac function in vivo, but etomoxir improved function of the isolated heart. The drugs did not affect total PDH and CPT-1 activity, but increased PDH-activity status, prevented a decrease in PDK4 expression in heart failure, increased α and β-MHC expression and shifted substrate oxidation toward glucose in the isolated working rat heart. In conclusion, pharmacologic induction of substrate-switching is associated with changes in myofibrillar isoform expression but does not reverse heart failure in vivo. The improvement of function in vitro deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bersin RM, Stacpoole PW (1997) Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am Heart J 134:841–855

    Article  PubMed  CAS  Google Scholar 

  2. Dobbins RL, Szczepaniak LS, Bentley B, Esser V, Myhill J, McGarry JD (2001) Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes 50:123–130

    Article  PubMed  CAS  Google Scholar 

  3. Doenst T, Bugger H, Schwarzer M, Faerber G, Borger MA, Mohr FW (2008) Three good reasons for heart surgeons to understand cardiac metabolism. Eur J Cardiothorac Surg 33:862–871

    Article  PubMed  Google Scholar 

  4. Doenst T, Goodwin GW, Cedars AM, Wang M, Stepkowski S, Taegtmeyer H (2001) Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metab Clin Exp 50:1083–1090

    PubMed  CAS  Google Scholar 

  5. Doenst T, Guthrie PH, Chemnitius JM, Zech R, Taegtmeyer H (1996) Fasting, lactate, and insulin improve ischemia tolerance in rat heart: a comparison with ischemic preconditioning. Am J Physiol 270:H1607–H1615

    PubMed  CAS  Google Scholar 

  6. Doenst T, Taegtmeyer H (1998) Profound underestimation of glucose uptake by [18F]2-deoxy-2-fluoroglucose in reperfused rat heart muscle. Circulation 97:2454–2462

    PubMed  CAS  Google Scholar 

  7. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content. Proc Natl Acad Sci USA 100:1226–1231

    Article  PubMed  CAS  Google Scholar 

  8. Fischer-Rasokat U, Doenst T (2003) Insulin-induced improvement of postischemic recovery is abolished by inhibition of protein kinase C in rat heart. J Thorac Cardiovas Surg 126:1806–1812

    Article  CAS  Google Scholar 

  9. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT axis. Basic Res Cardiol 102:393–411

    Article  PubMed  CAS  Google Scholar 

  10. Goodwin GW, Taegtmeyer H (1994) Metabolic recovery of isolated working rat heart after brief global ischemia. Am J Physiol 267:H462–H470

    PubMed  CAS  Google Scholar 

  11. Holubarsch CJ, Rohrbach M, Karrasch M, Boehm E, Polonski L, Ponikowski P, Rhein S (2007) A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci (Lond) 113:205–212

    Article  CAS  Google Scholar 

  12. Hoppel CL, Tomec RJ (1972) Carnitine palmitoyltransferase: location of two enzymatic activities in rat liver mitochondria. J Biol Chem 247:832–841

    PubMed  CAS  Google Scholar 

  13. Kobayashi K, Neely JR (1983) Effects of ischemia and reperfusion on pyruvate dehydrogenase activity in isolated rat hearts. J Mol Cell Cardiol 15:359–367

    Article  PubMed  CAS  Google Scholar 

  14. Liao R, Jain M, Cui L, D’Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen RM, Tian R (2002) Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106:2125–2131

    Article  PubMed  CAS  Google Scholar 

  15. Lionetti V, Linke A, Chandler MP, Young ME, Penn MS, Gupte S, d’Agostino C, Hintze TH, Stanley WC, Recchia FA (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66:454–461

    Article  PubMed  CAS  Google Scholar 

  16. Lopaschuk GD, McNeil GF, McVeigh JJ (1989) Glucose oxidation is stimulated in reperfused ischemic hearts with the carnitine palmitoyltransferase 1 inhibitor, etomoxir. Mol Cell Biochem 88:175–179

    Article  PubMed  CAS  Google Scholar 

  17. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR (1990) Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 66:546–553

    PubMed  CAS  Google Scholar 

  18. Lopaschuk GD, Wall SR, Olley PM, Davies GF (1988) Etoxomir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 63:1036–1042

    PubMed  CAS  Google Scholar 

  19. Luptak I, Yan J, Cui L, Jain M, Liao R, Tian R (2007) Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress. Circulation 116:901–909

    Article  PubMed  CAS  Google Scholar 

  20. Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392

    Article  PubMed  CAS  Google Scholar 

  21. Murray AJ, Cole MA, Lygate CA, Carr CA, Stuckey DJ, Little SE, Neubauer S, Clarke K (2008) Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 44:694–700

    Article  PubMed  CAS  Google Scholar 

  22. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  23. Sahn DJ, DeMaria A, Kisslo J, Weyman A (1978) Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 58:1072–1083

    PubMed  CAS  Google Scholar 

  24. Schmidt-Schweda S, Holubarsch C (2000) First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci 99:27–35

    Article  PubMed  CAS  Google Scholar 

  25. Schott P, Asif AR, Graf C, Toischer K, Hasenfuss G, Kogler H (2008) Myocardial adaptation of energy metabolism to elevated preload depends on calcineurin activity : a proteomic approach. Basic Res Cardiol 103:232–243

    Article  PubMed  CAS  Google Scholar 

  26. Schwab MA, Kolker S, van den Heuvel LP, Sauer S, Wolf NI, Rating D, Hoffmann GF, Smeitink JA, Okun JG (2005) Optimized spectrophotometric assay for the completely activated pyruvate dehydrogenase complex in fibroblasts. Clin Chem 51:151–160

    Article  PubMed  CAS  Google Scholar 

  27. Seeland U, Selejan S, Engelhardt S, Muller P, Lohse MJ, Bohm M (2007) Interstitial remodeling in beta1-adrenergic receptor transgenic mice. Basic Res Cardiol 102:183–193

    Article  PubMed  CAS  Google Scholar 

  28. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  PubMed  CAS  Google Scholar 

  29. Taegtmeyer H, Hems R, Krebs HA (1980) Utilization of energy-providing substrates in the isolated working rat heart. Biochem J 186:701–711

    PubMed  CAS  Google Scholar 

  30. Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echocardiographic volume determinations: echocardiographic–angiographic correlations in the presence of absence of asynergy. Am J Cardiol 37:7–11

    Article  PubMed  CAS  Google Scholar 

  31. Turcani M, Rupp H (1997) Etomoxir improves left ventricular performance of pressure-overloaded rat heart. Circulation 96:3681–3686

    PubMed  CAS  Google Scholar 

  32. Turcani M, Rupp H (1999) Modification of left ventricular hypertrophy by chronic etomoxir treatment. Br J Pharmacol 126:501–507

    Article  PubMed  CAS  Google Scholar 

  33. Wall SR, Lopaschuk GD (1989) Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim Biophys Acta 1006:97–103

    PubMed  CAS  Google Scholar 

  34. Wolf HP, Engel DW (1985) Decrease of fatty acid oxidation, ketogenesis and gluconeogenesis in isolated perfused rat liver by phenylalkyl oxirane carboxylate (B 807–27) due to inhibition of CPT I (EC 2.3.1.21). Eur J Biochem 146:359–363

    Article  PubMed  CAS  Google Scholar 

  35. Zaha V, Grohmann J, Gobel H, Geibel A, Beyersdorf F, Doenst T (2003) Experimental model for heart failure in rats—induction and diagnosis. The Thoracic and cardiovascular surgeon 51:211–215

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

TD is Heisenberg-Professor of the Deutsche Forschungsgemeinschaft (DFG) at the University of Leipzig and the study was supported by DFG grants to TD (Do602/3-2, 4-1, 6-1, and 8-1). The authors thank Heinrich Taegtmeyer M.D., D.Phil. for advice. We thank Vitalij Maks for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Doenst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarzer, M., Faerber, G., Rueckauer, T. et al. The metabolic modulators, Etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo. Basic Res Cardiol 104, 547–557 (2009). https://doi.org/10.1007/s00395-009-0015-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0015-5

Keywords

Navigation