Skip to main content
Log in

The effect of enhanced gap junctional conductance on ventricular conduction in explanted hearts from patients with heart failure

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Aim

To investigate ventricular conduction and refractoriness before and after application of rotigaptide, an enhancer of gap junctional conductance, to explanted hearts of patients with heart failure (HF).

Methods and results

In six explanted perfused hearts of patients with end-stage HF, activation/repolarization mapping was performed and refractory periods (RPs) and activation recovery intervals (ARIs) were measured before and after application of 50 nM rotigaptide. Rotigaptide caused a decrease of RP from 476 ± 36 to 453 ± 31 ms (P < 0.05), but did not change ARI-dispersion. During premature activation along the fibers rotigaptide decreased the minimal activation time (ATmin) and maximal activation time (ATmax) significantly from 35 ± 12 to 24 ± 9 and from 97 ± 38 to 43 ± 7 ms, respectively. Rotigaptide did not change ATmin and ATmax during activation perpendicular to the fiber direction. After application of rotigaptide conduction curves normalized in five/six recordings when activation was parallel, but destabilized in three/six hearts when activation was perpendicular to fiber direction. The destabilization was associated with local conduction delays rather than with facilitation of conduction.

Conclusion

Rotigaptide applied to hearts of patients with end-stage HF shortened RPs normalized conduction curves and increased conduction parallel to fiber direction. However, in 50% of the hearts local slowing of conduction with destabilization of conduction (curves) occurs at sites close to the stimulation site, when activation is perpendicular to fiber direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ai X, Pogwizd SM (2005) Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96:54–63

    Article  PubMed  CAS  Google Scholar 

  2. Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF (2004) Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res 95:717–725

    Article  PubMed  CAS  Google Scholar 

  3. Akar FG, Nass RD, Hahn S, Cingolani E, Shah M, Hesketh GG, DiSilvestre D, Tunin RS, Kass DA, Tomaselli GF (2007) Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol 293:H1223–H1230

    Article  PubMed  CAS  Google Scholar 

  4. Conrath CE, Wilders R, Coronel R, De Bakker JMT, Taggart P, de Groot JR, Opthof T (2004) Intercellular coupling through gap junctions masks M cells in the human heart. Cardiovasc Res 62:407–414

    Article  PubMed  CAS  Google Scholar 

  5. Coronel R, Casini S, Koopmann TT, Wilms-Schopman FJ, Verkerk AO, de Groot JR, Bhuiyan Z, Bezzina C, Veldkamp MW, Linnenbank AC, van der Wal AC, Tan HL, Brugada P, Wilde AAM, de Bakker JM (2005) Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome. A combined electrophysiological, genetic, histopathological and computational study. Circulation 112:2769–2777

    Article  PubMed  Google Scholar 

  6. Coronel R, de Bakker JM, Wilms-Schopman FJ, Opthof T, Linnenbank AC, Belterman CN, Janse MJ (2006) Monophasic action potentials and activation recovery intervals as measures of ventricular action potential duration: experimental evidence to resolve some controversies. Heart Rhythm 3:1043–1050

    Article  PubMed  Google Scholar 

  7. de Bakker JM, van Capelle FJ, Janse MJ, van Hemel NM, Hauer RN, Defauw JJ, Vermeulen FE, Bakker de Wekker PF (1991) Macroreentry in the infarcted human heart: the mechanism of ventricular tachycardias with a “focal” activation pattern. J Am Coll Cardiol 18:1005–1014

    Article  PubMed  Google Scholar 

  8. Delmar M, Michaels DC, Johnson T, Jalife J (1987) Effects of increasing intercellular resistance on transverse and longitudinal propagation in sheep epicardial muscle. Circ Res 60:780–785

    PubMed  CAS  Google Scholar 

  9. Dhein S, Hammerath B (2001) Aspects of the intercellular communication in aged hearts: effects of the gap junction uncoupler palmitoleic acid. Naunyn Schmiedebergs Arch Pharmacol 364:397–408

    Article  PubMed  CAS  Google Scholar 

  10. Dhein S, Kruseman K, Schaefer T (1999) Effects of the gap junction uncoupler palmitoleic acid on the activation and repolarization wavefronts in isolated rabbit hearts. Br J Pharmacol 128:1375–1384

    Article  PubMed  CAS  Google Scholar 

  11. Dhein S, Larsen BD, Petersen JS, Mohr FW (2003) Effects of the new antiarrhythmic peptide ZP123 on epicardial activation and repolarization pattern. Cell Commun Adhes 10:371–378

    Article  PubMed  CAS  Google Scholar 

  12. Eloff BC, Gilat E, Wan X, Rosenbaum DS (2003) Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy. Circulation 108:3157–3163

    Article  PubMed  CAS  Google Scholar 

  13. Fast VG, Kléber AG (1995) Block of impulse propagation at an abrupt tissue expansion: evaluation of the critical strand diameter in 2- and 3-dimensional computer models. Cardiovasc Res 30:449–459

    PubMed  CAS  Google Scholar 

  14. Fast VG, Kléber AG (1995) Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model. Cardiovasc Res 29:697–707

    PubMed  CAS  Google Scholar 

  15. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:393–411

    Article  PubMed  CAS  Google Scholar 

  16. Guerra JM, Everett TH IV, Lee KW, Wilson E, Olgin JE (2006) Effects of the gap junction modifier rotigaptide (ZP123) on atrial conduction and vulnerability to atrial fibrillation. Circulation 114:110–118

    Article  PubMed  CAS  Google Scholar 

  17. Haugan K, Olsen KB, Hartvig L, Petersen JS, Holstein-Rathlou NH, Hennan JK, Nielsen MS (2005) The antiarrhythmic peptide analog ZP123 prevents atrial conduction slowing during metabolic stress. J Cardiovasc Electrophysiol 16:537–545

    Article  PubMed  Google Scholar 

  18. Kawara T, Derksen R, de Groot JR, Coronel R, Tasseron S, Linnenbank AC, Hauer RN, Kirkels H, Janse MJ, de Bakker JM (2001) Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation 104:3069–3075

    Article  PubMed  CAS  Google Scholar 

  19. Kjølbye AL, Knudsen CB, Jepsen T, Larsen BD, Petersen JS (2003) Pharmacological characterization of the new stable antiarrhythmic peptide analog Ac-d-Tyr-d-Pro-d-Hyp-Gly-d-Ala-Gly-NH2 (ZP123): in vivo and in vitro studies. J Pharmacol Exp Ther 306:1191–1199

    Article  PubMed  CAS  Google Scholar 

  20. Kleber AG, Janse MJ, Wilms-Schopman FJG, Wilde AAM, Coronel R (1986) Changes in conduction velocity during acute ischemia in ventricular myocardial isolated porcine heart. Circulation 73:189–198

    PubMed  CAS  Google Scholar 

  21. Kwak BR, Jongsma HJ (1996) Regulation of cardiac gap junction channel permeability and conductance by several phosphorylating conditions. Mol Cell Biochem 157:93–99

    Article  PubMed  CAS  Google Scholar 

  22. Lammers WJEP, Schalij MJ, Kirchhof CJHJ, Allessie MA (1990) Quantification of spatial inhomogeneity in conduction and initiation of reentrant atrial arrhythmias. Am J Physiol 259:H1254–H1263

    PubMed  CAS  Google Scholar 

  23. Lesh MD, Pring M, Spear JF (1989) Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. A computer modeling study. Circ Res 65:1426–1440

    PubMed  CAS  Google Scholar 

  24. Mines GR (1914) On circulating excitation in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can IV:43–52

    Google Scholar 

  25. Muller A, Schaefer T, Linke W, Tudyka T, Gottwald M, Klaus W, Dhein S (1997) Actions of the antiarrhythmic peptide AAP10 on intercellular coupling. Naunyn Schmiedebergs Arch Pharmacol 356:76–82

    Article  PubMed  CAS  Google Scholar 

  26. Peters NS, Coromilas J, Severs NJ, Wit AL (1997) Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 95:988–996

    PubMed  CAS  Google Scholar 

  27. Potse M, Linnenbank AC, Grimbergen CA (2002) Software design for analysis of multichannel intracardial and body surface electrocardiograms. Comput Methods Programs Biomed 69:225–236

    Article  PubMed  Google Scholar 

  28. Querejeta R, Varo N, Lopez B, Larman M, Artinano E, Etayo JC, Martinez Ubago JL, Gutierrez-Stampa M, Emparanza JI, Gil MJ, Monreal I, Mindan JP, Diez J (2000) Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 101:1729–1735

    PubMed  CAS  Google Scholar 

  29. Rohr S, Kucera JP, Fast VG, Kléber AG (1997) Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling. Science 275:841–844

    Article  PubMed  CAS  Google Scholar 

  30. Sáez JC, Nairn AC, Czernik AJ, Fishman GI, Spray DC, Hertzberg EL (1997) Phosphorylation of connexin 43 and the regulation of neonatal rat cardiac myocyte gap junctions. J Mol Cell Cardiol 29:2131–2145

    Article  PubMed  Google Scholar 

  31. Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266

    Article  PubMed  CAS  Google Scholar 

  32. Shaw RM, Rudy Y (1997) Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res 81:727–741

    PubMed  CAS  Google Scholar 

  33. Spach MS, Heidlage JF, Dolber PC, Barr RC (2008) Mechanism of origin of conduction disturbances in aging human atrial bundles: experimental and model study. Heart Rhythm 4:175–185

    Article  Google Scholar 

  34. Wang Y, Rudy Y (2000) Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. Am J Physiol Heart Circ Physiol 278:H1019–H1029

    PubMed  CAS  Google Scholar 

  35. Weng S, Lauven M, Schaefer T, Polontchouk L, Grover R, Dhein S (2002) Pharmacological modification of gap junction coupling by an antiarrhythmic peptide via protein kinase C activation. FASEB J 16:1114–1116

    PubMed  CAS  Google Scholar 

  36. Wiegerinck RF, van Veen AA, Belterman CN, Schumacher CA, Noorman M, de Bakker JM, Coronel R (2008) Transmural dispersion of refractoriness and conduction velocity is associated with heterogeneously reduced connexin 43 in a rabbit model of heart failure. Heart Rhythm 5:1178–1185

    Article  PubMed  Google Scholar 

  37. Wilders R, Wagner MB, Golod DA, Kumar R, Wang Y-G, Goolsby WN, Joyner RW, Jongsma HJ (2000) Effects of anisotropy on the development of cardiac arrhythmias associated with focal activity. Pflügers Arch Eur J Physiol 441:301–312

    Article  CAS  Google Scholar 

  38. Xing D, Kjølbye AL, Nielsen MS, Petersen JS, Harlow KW, Holstein-Rathlou NH, Martins JB (2003) ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs. J Cardiovasc Electrophysiol 14:510–520

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Zealand Pharma for providing us with rotigaptide for this study and Dr. Anne Louise Kjølbye for her critical comments. We thank Dr. M. G. Hoogendijk and S. C van Amersfoorth for assistance with the histological sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Coronel MD, PhD.

Additional information

Returned for 1. Revision: 14 July 2008 1. Revision received: 26 August 2008

Returned for 2. Revision: 19 September 2008 2. Revision received: 31 October 2008

Returned for 3. Revision: 17 November 2008 3. Revision received: 18 November 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiegerinck, R.F., de Bakker, J.M.T., Opthof, T. et al. The effect of enhanced gap junctional conductance on ventricular conduction in explanted hearts from patients with heart failure. Basic Res Cardiol 104, 321–332 (2009). https://doi.org/10.1007/s00395-008-0771-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0771-7

Keywords

Navigation