Skip to main content

Advertisement

Log in

The S1P2 receptor expressed in human platelets is linked to the RhoA-Rho kinase pathway and is down regulated in type 2 diabetes

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Sphingosine-1-phosphate (S1P) is known to affect platelet responsiveness but the receptor mediating these effects and the mechanisms involved are poorly understood. This study was undertaken to examine S1P receptor expression in human platelets as well as potential changes associated with type 2 diabetes. S1P2 receptor expression (Western blotting) was detected in washed human platelets from healthy volunteers. Stimulation of these platelets with exogenous S1P led to a concentration-dependent increase in intracellular Ca2+ as well as to platelet aggregation. The S1P-induced increase in Ca2+ was sensitive to the S1P2 receptor antagonist JTE-013 but not the S1P1/3 antagonist VPC23019. Both antagonists reduced the aggregation stimulated by S1P in a non-additive manner. S1P also elicited the translocation of RhoA to the membrane and RhoA activity was inhibited (by 50%) by the S1P receptor antagonists. Platelets from patients with type 2 diabetes demonstrated an attenuated aggregability to S1P as well as decreased levels of the full-length S1P2 protein. The S1P2 antibody used identified a 45 kDa receptor cleavage product in patients with diabetes that could also be generated from healthy human platelet lysates by the addition of the Ca2+-activated protease, μ-calpain. These results indicate that the S1P2 receptor is involved in S1P-induced platelet aggregation and Rho kinase activation. Moreover, in platelets from patients with type 2 diabetes, responses to S1P are attenuated via a phenomenon attributed to the calpain-dependent cleavage of the S1P2 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alewijnse AE, Peters SL, Michel MC (2004) Cardiovascular effects of sphingosine-1-phosphate and other sphingomyelin metabolites. Br J Pharmacol 143:666–684

    Article  PubMed  CAS  Google Scholar 

  2. Altmann C, Meyer Zu HD, Boyukbas D, Haude M, Jakobs KH, Michel MC (2003) Sphingosylphosphorylcholine, a naturally occurring lipid mediator, inhibits human platelet function. Br J Pharmacol 138:435–444

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez SE, Milstien S, Spiegel S (2007) Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Met 18:300–307

    Article  CAS  Google Scholar 

  4. Ancellin N, Hla T (1999) Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J Biol Chem 274:18997–19002

    Article  PubMed  CAS  Google Scholar 

  5. Davis MD, Clemens JJ, Macdonald TL, Lynch KR (2005) Sphingosine 1-phosphate analogs as receptor antagonists. J Biol Chem 280:9833–9841

    Article  PubMed  CAS  Google Scholar 

  6. Dernbach E, Randriamboavonjy V, Fleming I, Zeiher AM, Dimmeler S, Urbich C (2008) Impaired interaction of platelets with endothelial progenitor cells in patients with cardiovascular risk factors. Basic Res Cardiol 103:572–581

    Article  PubMed  Google Scholar 

  7. Deutschman DH, Carstens JS, Klepper RL, Smith WS, Page MT, Young TR, Gleason LA, Nakajima N, Sabbadini RA (2003) Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am Heart J 146:62–68

    Article  PubMed  CAS  Google Scholar 

  8. Fleming I, Schulz C, Fichtlscherer B, Kemp BE, Fisslthaler B, Busse R (2003) AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets. Thromb Haemost 90:863–871

    PubMed  CAS  Google Scholar 

  9. Gorska M, Dobrzyn A, Baranowski M (2005) Concentrations of sphingosine and sphinganine in plasma of patients with type 2 diabetes. Med Sci Monit 11:CR35–CR38

    PubMed  CAS  Google Scholar 

  10. Hanel P, Andreani P, Graler MH (2007) Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 21:1202–1209

    Article  PubMed  Google Scholar 

  11. Hashizume T, Sato T, Fujii T (1992) Sphingosine enhances platelet aggregation through an increase in phospholipase C activity by a protein kinase C-independent mechanism. Biochem J 282:243–247

    PubMed  CAS  Google Scholar 

  12. Hla T (2003) Signaling and biological actions of sphingosine 1-phosphate. Pharmacol Res 47:401–407

    Article  PubMed  CAS  Google Scholar 

  13. Ikeda H, Satoh H, Yanase M, Inoue Y, Tomiya T, Arai M, Tejima K, Nagashima K, Maekawa H, Yahagi N, Yatomi Y, Sakurada S, Takuwa Y, Ogata I, Kimura S, Fujiwara K (2003) Antiproliferative property of sphingosine 1-phosphate in rat hepatocytes involves activation of Rho via Edg-5. Gastroenterology 124:459–469

    Article  PubMed  CAS  Google Scholar 

  14. Ito K, Anada Y, Tani M, Ikeda M, Sano T, Kihara A, Igarashi Y (2007) Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. Biochem Biophys Res Commun 357:212–217

    Article  PubMed  CAS  Google Scholar 

  15. Kalsch T, Elmas E, Nguyen XD, Suvajac N, Kluter H, Borggrefe M, Dempfle CE (2007) Endotoxin-induced effects on platelets and monocytes in an in vivo model of inflammation. Basic Res Cardiol 102:460–466

    Article  PubMed  Google Scholar 

  16. Kleinbongard P, Weber AA (2008) Impaired interaction between platelets and endothelial progenitor cells in diabetic patients. Basic Res Cardiol 103:569–571

    Article  PubMed  Google Scholar 

  17. Langer HF, Gawaz M (2008) Platelets in regenerative medicine. Basic Res Cardiol 103:299–307

    Article  PubMed  CAS  Google Scholar 

  18. Le SH, Milstien S, Spiegel S (2004) Generation and metabolism of bioactive sphingosine-1-phosphate. J Cell Biochem 92:882–899

    Article  Google Scholar 

  19. Lepley D, Paik JH, Hla T, Ferrer F (2005) The G protein-coupled receptor S1P2 regulates Rho/Rho kinase pathway to inhibit tumor cell migration. Cancer Res 65:3788–3795

    Article  PubMed  CAS  Google Scholar 

  20. Motohashi K, Shibata S, Ozaki Y, Yatomi Y, Igarashi Y (2000) Identification of lysophospholipid receptors in human platelets: the relation of two agonists, lysophosphatidic acid and sphingosine 1-phosphate. FEBS Lett 468:189–193

    Article  PubMed  CAS  Google Scholar 

  21. Nugent D, Xu Y (2000) Sphingosine-1-phosphate: characterization of its inhibition of platelet aggregation. Platelets 11:226–232

    Article  PubMed  CAS  Google Scholar 

  22. Ohmori T, Yatomi Y, Osada M, Kazama F, Takafuta T, Ikeda H, Ozaki Y (2003) Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. Cardiovasc Res 58:170–177

    Article  PubMed  CAS  Google Scholar 

  23. Peters SL, Alewijnse AE (2007) Sphingosine-1-phosphate signaling in the cardiovascular system. Curr Opin Pharmacol 7:186–192

    Article  PubMed  CAS  Google Scholar 

  24. Randriamboavonjy V, Schrader J, Busse R, Fleming I (2004) Insulin induces the release of vasodilator compounds from platelets by a nitric oxide-G kinase-VAMP-3-dependent pathway. J Exp Med 199:347–356

    Article  PubMed  CAS  Google Scholar 

  25. Randriamboavonjy V, Pistrosch F, Bolck B, Schwinger RHG, Dixit M, Badenhoop K, Cohen RA, Busse R, Fleming I (2008) Platelet sarcoplasmic endoplasmic reticulum Ca2+-ATPase and μ-calpain activity are altered in type 2 diabetes mellitus and restored by rosiglitazone. Circulation 117:52–60

    Article  PubMed  CAS  Google Scholar 

  26. Riondino S, Gazzaniga PP, Pulcinelli FM (2002) Convulxin induces platelet shape change through myosin light chain kinase and Rho kinase. Eur J Biochem 269:5878–5884

    Article  PubMed  CAS  Google Scholar 

  27. Salomone S, Potts EM, Tyndall S, Ip PC, Chun J, Brinkmann V, Waeber C (2008) Analysis of sphingosine 1-phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. Br J Pharmacol 153:140–147

    Article  PubMed  CAS  Google Scholar 

  28. Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T (2007) Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol 27:1312–1318

    Article  PubMed  CAS  Google Scholar 

  29. Schmidt H, Schmidt R, Geisslinger G (2006) LC-MS/MS-analysis of sphingosine-1-phosphate and related compounds in plasma samples. Prostaglandins Other Lipid Mediat 81:162–170

    Article  PubMed  CAS  Google Scholar 

  30. Siess W (2002) Athero- and thrombogenic actions of lysophosphatidic acid and sphingosine-1-phosphate. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1582:204–215

    Article  CAS  Google Scholar 

  31. Tamaru S, Fukuta T, Kaibuchi K, Matsuoka Y, Shiku H, Nishikawa M (2005) Rho-kinase induces association of adducin with the cytoskeleton in platelet activation. Biochem Biophys Res Commun 332:347–351

    Article  PubMed  CAS  Google Scholar 

  32. Van B, Jr., Lee MJ, Menzeleev R, Olivera A, Edsall L, Cuvillier O, Thomas DM, Coopman PJ, Thangada S, Liu CH, Hla T, Spiegel S (1998) Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol 142:229–240

    Article  Google Scholar 

  33. Watala C, Boncler M, Gresner P (2005) Blood platelet abnormalities and pharmacological modulation of platelet reactivity in patients with diabetes mellitus. Pharmacol Rep 57:42–58

    PubMed  Google Scholar 

  34. Watala C, Boncler M, Pietrucha T, Trojanowski Z (1999) Possible mechanisms of the altered platelet volume distribution in type 2 diabetes: does increased platelet activation contribute to platelet size heterogeneity? Platelets 10:52–60

    Article  PubMed  CAS  Google Scholar 

  35. Watterson KR, Berg KM, Kapitonov D, Payne SG, Miner AS, Bittman R, Milstien S, Ratz PH, Spiegel S (2007) Sphingosine-1-phosphate and the immunosuppressant, FTY720-phosphate, regulate detrusor muscle tone. FASEB J 21:2818–2828

    Article  PubMed  CAS  Google Scholar 

  36. Yatomi Y, Igarashi Y, Yang L, Hisano N, Qi R, Asazuma N, Satoh K, Ozaki Y, Kume S (1997) Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem 121:969–973

    PubMed  CAS  Google Scholar 

  37. Yatomi Y, Ruan F, Hakomori S, Igarashi Y (1995) Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 86:193–202

    PubMed  CAS  Google Scholar 

  38. Yatomi Y, Yamamura S, Hisano N, Nakahara K, Igarashi Y, Ozaki Y (2004) Sphingosine 1-phosphate breakdown in platelets. J Biochem 136:495–502

    Article  PubMed  CAS  Google Scholar 

  39. Yatomi Y, Yamamura S, Ruan F, Igarashi Y (1997) Sphingosine 1-phosphate induces platelet activation through an extracellular action and shares a platelet surface receptor with lysophosphatidic acid. J Biol Chem 272:5291–5297

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Katharina Bruch and Claudia Grosser for expert technical assistance. The experimental work described in this manuscript was supported by the Deutsche Forschungsgemeinschaft (SFB 533, B5; and by Exzellenzcluster 147 “Cardio-Pulmonary Systems”) as well as by the Lipid Signaling Research Center Frankfurt and a young investigator grant (to VR) awarded by the Medical faculty of the Goethe University, Frankfurt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Fleming PhD.

Additional information

Returned for 1. Revision: 27 August 2008 1. Revision received: 11 September 2008

Returned for 2. Revision: 26 September 2008 2. Revision received: 6 November 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randriamboavonjy, V., Badenhoop, K., Schmidt, H. et al. The S1P2 receptor expressed in human platelets is linked to the RhoA-Rho kinase pathway and is down regulated in type 2 diabetes. Basic Res Cardiol 104, 333–340 (2009). https://doi.org/10.1007/s00395-008-0769-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0769-1

Keywords

Navigation