Skip to main content
Log in

Modulation of L-type Ca2+ channel current density and inactivation by β-adrenergic stimulation during murine cardiac embryogenesis

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

L-type Ca2+ current (I CaL) is a key regulatory and functional element during early embryonic cardiomyogenesis. As the embryonic heart underlies hormonal modulation, e.g. catecholamines, we aimed at studying effects of β-adrenergic stimulation on I CaL densities and inactivation kinetics during murine heart development.

Methods

I CaL was recorded applying the whole-cell patch-clamp technique in ventricular myocytes of early embryonic (EDS, E9.5–11.5) and late developmental, fetal (LDS, E16.5–18.5) stages as well as adult cardiomyocytes. To distinguish between Ca2+-(CDI) and voltage-dependent inactivation (VDI), Ca2+ was replaced with Ba2+ in the extracellular recording solution. The β-adrenergic signaling pathway was simulated by applying isoproterenol (Iso).

Results

Basal current densities showed an increase of I CaL during development (EDS: −9.61 ± 1.97 pA/pF, n = 9; LDS: −13.2 ± 4.26 pA/pF, n = 12; adult: −16.1 ± 4.63 pA/pF, n = 5). Iso (1 µM) enhanced I CaL density with low effects at EDS (17.1 ± 3.58%, n = 8, P > 0.05) but strong effects at LDS (74.1 ± 3.77%, n = 8, P < 0.01) and in adults (90.6 ± 7.01%, n = 6, P < 0.001). The current availability was significantly higher at LDS as compared to EDS and elevated after application of Iso. In the presence of Ca2+, the fast phase of I CaL inactivation (τf) was significantly enhanced by Iso at LDS. The slow phase of inactivation (τs) was unaltered at both developmental stages. However, VDI was significantly reduced under Iso in LDS and adult cardiomyocytes.

Conclusion

These results imply that β-adrenergic modulation becomes of importance especially during fetal heart development. CDI and VDI of I CaL are modulated by β-adrenergic stimulation in fetal but not in early embryonic mouse cardiomyocytes. Furthermore our data suggest important changes of the L-type Ca2+ channel protein, and/or maturation of the Ca2+-induced Ca2+ release (CICR) machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adachi-Akahane S, Leemann L, Morad M (1996) Cross-signaling between L-type Ca2+ channels and ryanodine receptors in rat ventricular myocytes. J Gen Physiol 108:435–454

    Article  PubMed  CAS  Google Scholar 

  2. Aiba S, Creazzo TL (1993) Comparison of the number of dihydropyridine receptors with the number of functional L-type calcium channels in embryonic heart. Circ Res 72:396–402

    PubMed  CAS  Google Scholar 

  3. An RH, Davies MP, Doevendans PA, Kubalak SW, Bangalore R, Chien KR, Kass RS (1996) Developmental changes in beta-adrenergic modulation of L-type Ca2+ channels in embryonic mouse heart. Circ Res 78:371–378

    PubMed  CAS  Google Scholar 

  4. Azzouzi HE, De Windt LJ (2008) Heart spotting. Basic Res Cardiol 103:228–231

    Article  PubMed  CAS  Google Scholar 

  5. Bernatchez G, Talwar D, Parent L (1998) Mutations in the EF-hand motif impair the inactivation of barium currents of the cardiac alpha1C channel. Biophys J 75:1727–1739

    Article  PubMed  CAS  Google Scholar 

  6. Beuckelmann DJ, Nabauer M, Erdmann E (1991) Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol 23:929–937

    Article  PubMed  CAS  Google Scholar 

  7. Brette F, Orchard C (2003) T-tubule function in mammalian cardiac myocytes. Circ Res 92:1182–1192

    Article  PubMed  CAS  Google Scholar 

  8. Brillantes AM, Bezprozvannaya S, Marks AR (1994) Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation contraction coupling. Circ Res 75:503–510

    PubMed  CAS  Google Scholar 

  9. Cohen NM, Lederer WJ (1988) Changes in the calcium current of rat ventricular myocytes during development. J Physiol 406:115–146

    PubMed  CAS  Google Scholar 

  10. Ferreira G, Yi J, Rios E, Shirokov R (1997) Ion-dependent inactivation of barium current through L-type calcium channels. J Gen Physiol 109:449–461

    Article  PubMed  CAS  Google Scholar 

  11. Findlay I (2002a) Voltage- and cation-dependent inactivation of L-type Ca2+ channel currents in guinea-pig ventricular myocytes. J Physiol 541:731–740

    Article  PubMed  CAS  Google Scholar 

  12. Findlay I (2002b) β-adrenergic stimulation modulates Ca2+- and voltage-dependent inactivation of L-type Ca2+ channel currents in guinea-pig ventricular myocytes. J Physiol 541:741–751

    Article  PubMed  CAS  Google Scholar 

  13. Findlay I (2002c) β-adrenergic and muscarinic agonists modulate inactivation of L-type Ca2+ channel currents in guinea-pig ventricular myocytes. J Physiol 545:375–388

    Article  PubMed  CAS  Google Scholar 

  14. Findlay I (2003) Physiological modulation of inactivation in L-type Ca2+ channels: one switch. J Physiol 554:275–283

    Article  PubMed  CAS  Google Scholar 

  15. Fleischmann BK, Duan Y, Fan Y, Schoneberg T, Ehlich A, Lenka N, Viatchenko-Karpinski S, Pott L, Hescheler J, Fakler B (2004) Differential subunit composition of the G protein-activated inward-rectifier potassium channel during cardiac development. J Clin Invest 114:994–1001

    PubMed  CAS  Google Scholar 

  16. Frank JS, Mottino G, Reid D, Molday RS, Philipson KD (1992) Distribution of the Na(+)–Ca2+ exchange protein in mammalian cardiac myocytes: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 117:337–345

    Article  PubMed  CAS  Google Scholar 

  17. Gera S, Byerly L (1999) Voltage- and calcium-dependent inactivation of calcium channels in Lymnaea neurons. J Gen Physiol 114:535–550

    Article  PubMed  CAS  Google Scholar 

  18. Golovko VA, Bojtsov IV, Kotov LN (2003) Single and multiple early after depolarization caused by nickel in rat atrial muscle. Gen Physiol Biophys 22:275–278

    PubMed  CAS  Google Scholar 

  19. Haddock PS, Coetzee WA, Cho E, Porter L, Katoh H, Bers DM, Jafri MS, Artman M (1999) Subcellular [Ca2+] i gradients during excitation-contraction coupling in newborn rabbit ventricular myocytes. Circ Res 85:415–427

    PubMed  CAS  Google Scholar 

  20. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv 391:85–100

    Article  PubMed  CAS  Google Scholar 

  21. Katsube Y, Yokoshiki H, Nguyen L, Sperelakis N (1996) Differences in isoproterenol stimulation of Ca2+ current of rat ventricular myocytes in neonatal compared to adult. Eur J Pharmacol 317:391–400

    Article  PubMed  CAS  Google Scholar 

  22. Kojima M, Sperelakis N, Sada H (1990) Ontogenesis of transmembrane signaling systems for control of cardiac Ca2+ channels. J Dev Physiol 14:181–219

    PubMed  CAS  Google Scholar 

  23. Lee KS, Marban E, Tsien RW (1985) Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol 364:395–411

    PubMed  CAS  Google Scholar 

  24. Linz KW, Meyer R (1998) Control of L-type calcium current during the action potential of guinea-pig ventricular myocytes. J Physiol 513:425–442

    Article  PubMed  CAS  Google Scholar 

  25. Liu W, Yasui K, Arai A, Kamiya K, Cheng J, Kodama I, Toyama J (1999) β-adrenergic modulation of L-type Ca2+-channel currents in early- stage embryonic mouse heart. Am J Physiol Heart Circ Physiol 276:H608–H613

    CAS  Google Scholar 

  26. Lyngbaek S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102:101–114

    Article  PubMed  Google Scholar 

  27. Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392

    Article  PubMed  CAS  Google Scholar 

  28. Maltsev VA, Ji GJ, Wobus AM, Fleischmann BK, Hescheler J (1999) Establishment of beta-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development. Circ Res 84:136–145

    PubMed  CAS  Google Scholar 

  29. Masuda H (1996) Developmental changes in β-adrenergic and muscarinic modulations of Ca currents in fetal and neonatal ventricular cardiomyocytes of the rat. Reprod Fert Dev 8:129–135

    Article  CAS  Google Scholar 

  30. Mattera R, Graziano MP, Yatani A, Zhou Z, Graf R, Codina J, Birnbaumer L, Gilman AG, Brown AM (1989) Splice variants of the alpha subunit of the G protein Gs activate both adenylyl cyclase and calcium channels. Science 243:804–807

    Article  PubMed  CAS  Google Scholar 

  31. McDonald, TF, Pelzer S, Trautwein W, Pelzer DJ (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74:365–507

    PubMed  CAS  Google Scholar 

  32. McDonough SI, Mori Y, Bean BP (2005) FPL 64176 modification of CaV1.2 L-type Ca2+ channels: dissociation of effects on ionic current and gating current. Biophys J 88:211–223

    Article  PubMed  CAS  Google Scholar 

  33. Mitarai S, Kaibara M, Yano K, Taniyama K (2000) Two distinct inactivation processes related to phosphorylation in cardiac L-type Ca2+ channel currents. Am J Physiol Cell Physiol 279:C603–C610

    PubMed  CAS  Google Scholar 

  34. Nguemo F, Fleischmann BK, Schunkert H, Hescheler J, Reppel M (2007) Functional expression and inactivation of L-type Ca2+ currents during murine heart development-implications for cardiac Ca2+ homeostasis. Cell Physiol Biochem 20:809–824

    Article  PubMed  CAS  Google Scholar 

  35. Osaka T, Joyner RW (1992) Developmental changes in the β-adrenergic modulation of Ca2+ currents in rabbit ventricular cells. Circ Res 70:104–115

    PubMed  CAS  Google Scholar 

  36. Pelzer D, Pelzer S, McDonald TF (1990) Properties and regulation of Ca2+ channels in muscle cells. Rev Physiol Biochem Pharmacol 114:107–207

    Article  PubMed  CAS  Google Scholar 

  37. Reppel M, Boettinger C, Hescheler J (2004) Beta-adrenergic and muscarinic modulation of human embryonic stem cell-derived cardiomyocytes. Cell Physiol Biochem 14:187–196

    Article  PubMed  CAS  Google Scholar 

  38. Reppel M, Sasse P, Malan D, Nguemo F, Reuter H, Bloch W, Hescheler J, Fleischmann BK (2007) Functional expression of the Na+/Ca2+ exchanger in the embryonic mouse heart. J Mol Cell Cardiol 42:121–132

    Article  PubMed  CAS  Google Scholar 

  39. Reppel M, Sasse P, Piekorz R, Tang M, Roell W, Duan Y, Kletke A, Hescheler J, Nürnberg B, Fleischmann BK (2005) S100A1 enhances the L-type Ca2+ current in embryonic mouse and neonatal rat ventricular cardiomyocytes. J Biol Chem 280:36019–36028

    Article  PubMed  CAS  Google Scholar 

  40. Sako H, Sperelakis N, Yatani A (1998) Ca2+ entry through cardiac L-type Ca2+ channels modulates beta-adrenergic stimulation in mouse ventricular myocytes. Pflugers Arch 435:749–752

    Article  PubMed  CAS  Google Scholar 

  41. Sasse P, Reppel M, Hescheler J, Fleischmann BK (2005) CICR in the embryonic heart. Biophys J 88:321A–322A

    Google Scholar 

  42. Scamps F, Mayoux E, Charlemagne D, Vassort G (1990) Calcium current in single cells isolated from normal and hypertrophied rat heart. Circ Res 67:199–208

    PubMed  CAS  Google Scholar 

  43. Seeland U, Selejan S, Engelhardt S, Müller P, Lohse MJ, Böhm M (2007) Interstitial remodeling in beta1-adrenergic receptor transgenic mice. Basic Res Cardiol 102:183–193

    Article  PubMed  CAS  Google Scholar 

  44. Viatchenko-Karpinski S, Györke S (2001) Modulation of the Ca2+-induced Ca2+ release cascade by ß-adrenergic stimulation in rat ventricular myocytes. J Physiol 533:837–848

    Article  PubMed  CAS  Google Scholar 

  45. Wetzel GT, Chen F, Klitzner TS (1991) L-and T-type Ca2+ channels in acutely isolated neonatal and adult cardiac myocytes. Pediatr Res 30:89–94

    PubMed  CAS  Google Scholar 

  46. Yang XY, Yang TT, Schubert W, Factor SM, Chow CW (2007) Dosage-dependent transcriptional regulation by the calcineurin/NFAT signaling in developing myocardium transition. Dev Biol 303:825–837

    Article  PubMed  CAS  Google Scholar 

  47. Yasuda T, Lewis RJ, Adams DJ (2004) Overexpressed Ca(v)beta3 inhibits N-type (Cav2.2) calcium channel currents through a hyperpolarizing shift of ultra-slow and closed-state inactivation. J Gen Physiol 123:401–416

    Article  PubMed  CAS  Google Scholar 

  48. Yatani A, Brown AM (1989) Rapid β-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science 245:71–74

    Article  PubMed  CAS  Google Scholar 

  49. Yue, DT, Herzig S, Marban E (1990) β-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc Natl Acad Sci USA 87:753–757

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Filomain Nguemo was a postgraduate scholarship recipient from Rosa-Luxemburg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Reppel.

Additional information

Returned for 1. Revision: 7 March 2008 1. Revision received: 8 March 2008

Returned for 2. Revision: 15 August 2008 2. Revision received: 20 September 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguemo, F., Sasse, P., Fleischmann, B.K. et al. Modulation of L-type Ca2+ channel current density and inactivation by β-adrenergic stimulation during murine cardiac embryogenesis. Basic Res Cardiol 104, 295–306 (2009). https://doi.org/10.1007/s00395-008-0755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0755-7

Keywords

Navigation