Skip to main content
Log in

Effect of voluntary exercise on number and volume of cardiomyocytes and their mitochondria in the mouse left ventricle

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Voluntary exercise (VE) has a beneficial influence on the heart and mean lifespan. The present study evaluates structural adaptations of cardiomyocytes and their mitochondria due to VE by new, unbiased stereological methods. Female, 7–9-week-old mice were randomly assigned to a control (CG, n = 7) or VE group (EG, n = 7). EG animals were housed in cages with free access to a running wheel and had a mean running distance of 6.7 (1.8) km per day. After 4 weeks, the hearts of all mice were processed for light and electron microscopy. We estimated the number and volume of cardiomyocytes by the disector method and the number and volume of mitochondria by estimation of the Euler number. In comparison to CG, VE did not have an effect on the myocardial volume of the left ventricle (CG: 93 (10), EG: 103 (17) (mm3)), the number of cardiomyocytes (CG: 2.81 (0.27), EG: 2.82 (0.43) (×106)) and their number-weighted mean volume. However, the composition of the cardiomyocytes changed due to VE. The total volume of mitochondria (CG: 21.8 (4.9), EG: 32.2 (4.3) (mm3), P < 0.01) and the total number (CG: 3.76 (0.44), EG: 7.02 (1.13) (×1010), P < 0.001) were significantly higher in EG than in CG. The mean number-weighted mitochondrial volume was smaller in EG than in CG (P < 0.05). In summary, VE does not alter ventricular volume nor cardiomyocyte volume or number but the oxidative capacity of cardiomyocytes by an increased mitochondrial number and total volume in the left ventricle. These structural changes may participate in the beneficial effects of VE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen DL, Harrison BC, Maass A, Bell ML, Byrnes WC, Leinwand LA (2001) Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse. J Appl Physiol 90:1900–1908

    PubMed  CAS  Google Scholar 

  2. Anversa P, Olivetti G, Loud AV (1980) Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. Circ Res 46:495–502

    PubMed  CAS  Google Scholar 

  3. Anversa P, Beghi C, Levicky V, McDonald SL, Kikkawa Y (1982) Morphometry of right ventricular hypertrophy induced by strenuous exercise in rat. Am J Physiol 243:H856–H861

    PubMed  CAS  Google Scholar 

  4. Anversa P, Beghi C, McDonald SL, Levicky V, Kikkawa Y, Olivetti G (1984) Morphometry of right ventricular hypertrophy induced by myocardial infarction in the rat. Am J Pathol 116:504–513

    PubMed  CAS  Google Scholar 

  5. Arcos JC, Sohal RS, Sun SC, Argus MF, Burch GE (1968) Changes in ultrastructure and respiratory control in mitochondria of rat heart hypertrophied by exercise. Exp Mol Pathol 8:49–65

    Article  PubMed  CAS  Google Scholar 

  6. Bozner A, Meessen H (1969) The ultrastructure of the myocardium of the rat after single and repeated swim exercises. Virchows Arch B Cell Pathol 3:248–269

    PubMed  CAS  Google Scholar 

  7. Brændgaard H, Gundersen HJ (1986) The impact of recent stereological advances on quantitative studies of the nervous system. J Neurosci Meth 18:39–78

    Article  Google Scholar 

  8. Brüel A, Nyengaard JR (2005) Design-based stereological estimation of the total number of cardiac myocytes in histological sections. Basic Res Cardiol 100:311–319

    Article  PubMed  Google Scholar 

  9. Crisman RP, Tomanek RJ (1985) Exercise training modifies myocardial mitochondria and myofibril growth in spontaneously hypertensive rats. Am J Physiol 248:H8–H14

    PubMed  CAS  Google Scholar 

  10. Deussen A, Brand M, Pexa A, Weichsel J (2006) Metabolic coronary flow regulation—current concepts. Basic Res Cardiol 101:453–464

    Article  PubMed  CAS  Google Scholar 

  11. Dorph-Petersen KA, Nyengaard JR, Gundersen HJ (2001) Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc 204:232–246

    Article  PubMed  CAS  Google Scholar 

  12. Fagard R (2003) Athlete’s heart. Heart 89:1455–1461

    Article  PubMed  Google Scholar 

  13. Gardner JD, Brower GL, Janicki JS (2005) Effects of dietary phytoestrogens on cardiac remodeling secondary to chronic volume overload in female rats. J Appl Physiol 99:1378–1383

    Article  PubMed  CAS  Google Scholar 

  14. Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    PubMed  CAS  Google Scholar 

  15. Holloszy JO (1997) Exercise increases average longevity of female rats despite increased food intake and no growth retardation. J Gerontol A Biol Sci Med Sci 48:B97–B100

    Google Scholar 

  16. Holloszy JO (1998) Mortality rate and longevity of food-restricted exercising male rats: a reevaluation. J Appl Physiol 82:399–403

    Google Scholar 

  17. Hoppeler H, Lindstedt SL, Uhlmann A, Niesel A, Cruz-Orive LM, Weibel ER (1984) Oxygen consumption and the composition of skeletal muscle tissue after training and inactivation in the European woodmouse (Apodemus sylvaticus). J Comp Physiol B 155:51–61

    Article  Google Scholar 

  18. Hoppeler H, Kayar SR, Claassen H, Uhlmann E, Karas RH (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand: III. Skeletal muscles: setting the demand for oxygen. Respir Physiol 69:27–46

    Article  Google Scholar 

  19. Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29:373–386

    Article  PubMed  CAS  Google Scholar 

  20. Judge S, Jang YM, Smith A, Selman C, Phillips T, Speakman JR, Hagen T, Leeuwenburgh C (2005) Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol Regul Integr Comp Physiol 289:R1564–R1572

    PubMed  CAS  Google Scholar 

  21. Kayar SR, Conley KE, Claassen H, Hoppeler H (1986) Capillarity and mitochondrial distribution in rat myocardium following exercise training. J Exp Biol 120:189–199

    PubMed  CAS  Google Scholar 

  22. Kingwell BA, Arnold PJ, Jennings GL, Dart AM (1998) The effects of voluntary running on cardiac mass and aortic compliance in Wistar-Kyoto and spontaneously hypertensive rats. J Hypertens 16:181–185

    Article  PubMed  CAS  Google Scholar 

  23. Konhilas JP, Mass AH, Luckey SW, Stauffler BL, Olson EN, Leinwand LA (2004) Sex modifies exercise and cardiac adaptation in mice. Am J Physiol Heart Circ Physiol 287:H2768–H2776

    Article  PubMed  CAS  Google Scholar 

  24. Kroustrup JP, Gundersen HJ (2001) Estimating the number of complex particles using the ConnEulor principle. J Microsc 203:314–320

    Article  PubMed  CAS  Google Scholar 

  25. MacLellan WR, Schneider MD (2000) Genetic dissection of cardiac growth control pathways. Annu Rev Physiol 62:289–319

    Article  PubMed  CAS  Google Scholar 

  26. Maron BJ, Pelliccia A (2006) The heart of trained athletes. Cardiac remodelling and the risks of sports, including sudden death. Circulation 114:1633–1644

    Article  PubMed  Google Scholar 

  27. Mattfeldt T, Krämer K-L, Zeitz R, Mall G (1986) Stereology of myocardial hypertrophy induced by physical exercise. Virchows Arch [Pathol Anat] 409:473–484

    Article  CAS  Google Scholar 

  28. Mattfeldt T, Mall G, Gharehbaghi H, Moller P (1990) Estimation of surface area and length with the orientator. J Microsc 159:301–317

    PubMed  CAS  Google Scholar 

  29. Mayhew TM, Pharaoh A, Austin A, Fagan DG (1997) Stereological estimates of nuclear number in human ventricular cardiomyocytes before and after birth obtained using physical disectors. J Anat 191:107–115

    Article  PubMed  Google Scholar 

  30. Mayhew TM, Huppertz B, Kaufmann P, Kingdom JC (2003) The ‘reference trap’ revisited: examples of the dangers in using ratios to describe fetoplacental angiogenesis and trophoblast turnover. Placenta 24:1–7

    Article  PubMed  CAS  Google Scholar 

  31. Mendez J, Keys A (1961) Density and composition of mammalian muscle. Metabolism 9:184–188

    Google Scholar 

  32. Natali AJ, Turner DL, Harrison SM, White E (2001) Regional effects of voluntary exercise on cell size and contraction-frequency responses in rat cardiac myocytes. J Exp Biol 204:1191–1199

    PubMed  CAS  Google Scholar 

  33. Noakes TD (2006) The limits of endurance exercise. Basic Res Cardiol 101:408–417

    Article  PubMed  Google Scholar 

  34. Nyengaard JR, Gundersen HJ (1992) The isector: a simple and direct method for generating isotropic, uniform random sections from small specimens. J Microsc 165:427–431

    Google Scholar 

  35. Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F, Pette D (1985) Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Arch 404:1–9

    Article  PubMed  CAS  Google Scholar 

  36. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    PubMed  CAS  Google Scholar 

  37. Szibor M, Holtz J (2003) Mitochondrial ageing. Basic Res Cardiol 98:210–218

    PubMed  CAS  Google Scholar 

  38. Vanoli E, Cerati D, Pedretti RFE (1998) Autonomic control of heart rate: pharmacological and nonpharmacological modulation. Basic Res Cardiol 93:133–142

    Article  PubMed  Google Scholar 

  39. Weibel ER (1979) Stereological methods. Vol. 1: Practical methods for biological morphometry. Academic Press, London

    Google Scholar 

  40. Weibel ER (2000) Symmorphosis. On form and function in shaping life. Harvard University Press, Cambridge

    Google Scholar 

  41. Weibel ER, Bacigalupe LD, Schmitt B, Hoppeler H (2004) Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor. Respir Physiol Neurobiol 140:115–132

    Article  PubMed  Google Scholar 

  42. Wulfsohn D, Nyengaard JR, Tang Y (2004) Postnatal growth of cardiomyocytes in the left ventricle of the rat. Anat Rec A Discov Mol Cell Evol Biol 277:236–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ms. S. Freese, Ms. H. Hühn, Ms. S. Kosin, Ms. R. Waldmann-Beushausen, Ms. S. Wienstroth (all Göttingen), Ms. A. Berg and Ms. M.-B. Lundorf (both Aarhus) for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mühlfeld.

Additional information

Returned for 1. revision: 12 January 2007 1. Revision received: 17 January 2007 Returned for 2. revision: 12 February 2007 2. Revision received: 27 September 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisele, J.C., Schaefer, IM., Randel Nyengaard, J. et al. Effect of voluntary exercise on number and volume of cardiomyocytes and their mitochondria in the mouse left ventricle. Basic Res Cardiol 103, 12–21 (2008). https://doi.org/10.1007/s00395-007-0684-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-007-0684-x

Key words

Navigation