Skip to main content
Log in

Electrical interaction of mechanosensitive fibroblasts and myocytes in the heart

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Fibroblasts in the heart can respond to mechanical deformation of the plasma membrane with characteristic changes of their membrane potential. Membrane depolarization of the fibroblasts occurs during the myocardial contractions and is caused by an influx of cations, mainly of sodium ions, into the cells. Conversely, application of mechanical stretch to the cells, i.e., during diastolic relaxation of the myocardium, will hyperpolarize the membrane potential of the fibroblasts due to reduced sodium entry. Thus, cardiac fibroblasts can function as mechano–electric transducers that are possibly involved in the mechano–electric feedback mechanism of the heart. Mechano–electric feedback refers to the phenomenon, that the cardiac mechanical environment, which depends on the variable filling pressure of the ventricles, modulates the electrical function of the heart. Increased sensitivity of the cardiac fibroblasts to mechanical forces may contribute to the electrical instability and arrhythmic disposition of the heart after myocardial infarction. Novel findings indicate that these processes involve the intercellular transfer of electrical signals between fibroblasts and cardiomyocytes via gap junctions. In this article we will discuss the recent progress in the electrophysiology of cardiac fibroblasts. The main focus will be on the intercellular pathways through which fibroblasts and cardiomyocytes communicate with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bainbridge FA (1915) The influence of venous filling upon the rate of the heart. J Physical (London) 50:65–84

    Google Scholar 

  2. Barrabes JA, Garcia–Dorado D, Padilla F, Agullo L, Trobo L, Carballo J, Soler–Soler J (2002) Ventricular fibrillation during acute coronary occlusion is related to the dilation of the ischemic region. Basic Res Cardiol 97:445–451

    Article  PubMed  Google Scholar 

  3. Baumgarten CM, Clemo HF (2003) Swelling–activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol 82:25–42

    Article  CAS  PubMed  Google Scholar 

  4. Binggeli R, Weinstein RC (1985) Deficits in elevating membrane potential of rat fibrosarcoma cells after cell contact. Cancer Res 45 (1):235–241

    CAS  PubMed  Google Scholar 

  5. Borek C, Higashino S, Loewenstein WR (1969) Intercellular communication and tissue growth. IV. Conductance of membrane junctions of normal and cancerous cells in culture. J Membr Biol 1:274–293

    Google Scholar 

  6. Camelliti P, Devlin GP, Matthews KG, Kohl P (2004) Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovasc Res 62 (2):415–425

    Article  CAS  PubMed  Google Scholar 

  7. Camelliti P, Green CR, LeGrice I, Kohl P (2004) Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res 94 (6):828–835

    Article  CAS  PubMed  Google Scholar 

  8. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40–51

    Article  CAS  PubMed  Google Scholar 

  9. Davies MJ, Pomerance A (1972) Quantitative study of ageing changes in the human sinoatrial node and internodal tracts. British Heart Journal 34:150–160

    CAS  PubMed  Google Scholar 

  10. Dean JW, Lab MJ (1989) Arrhythmia in heart failure: role of mechanically induced changes in electrophysiology. Lancet 1(8650):1309–1312

    Article  CAS  PubMed  Google Scholar 

  11. Dhein S (1998) Gap junction channels in the cardiovascular system: pharmacological and physiological modulation. Trends Pharmacol Sci 19 (6):229–241

    Article  CAS  PubMed  Google Scholar 

  12. Franz MR (1996) Mechano–electrical feedback in ventricular myocardium. Cardiovasc Res 32 (1):15–24

    Article  CAS  PubMed  Google Scholar 

  13. Garcia–Dorado D, Rodriguez–Sinovas A, Ruiz–Meana M (2004) Gap junctionmediated spread of cell injury and death during myocardial ischemia–reperfusion. Cardiovasc Res 61:386–401

    Article  CAS  PubMed  Google Scholar 

  14. Gaudesius G, Miragoli M, Thomas SP, Rohr S (2003) Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res 93 (5):421–428

    Article  CAS  PubMed  Google Scholar 

  15. Goshima K (1970) Formation of nexuses and electrotonic transmission between myocardial and FL cells in monolayer culture. Exp Cell Res 63 (1):124–130

    Article  CAS  PubMed  Google Scholar 

  16. Hyde A, Blondel B, Matter A, Cheneval JP, Filloux B, Girardier L (1969) Homo– and heterocellular junctions in cell cultures: An electrophysiological and morphological study. Progr Brain Res 31:283–311

    CAS  Google Scholar 

  17. Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I, Kamkin A (2003) Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Prog Biophys Mol Biol 82 (1–3):43–56

    Article  CAS  PubMed  Google Scholar 

  18. Kamkin A, Kiseleva I, Isenberg G (2000) Stretch–activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc Res 48:409–420

    Article  CAS  PubMed  Google Scholar 

  19. Kamkin A, Kiseleva I, Wagner KD, Leiterer KP, Theres H, Scholz H, Günther J, Lab MJ (2000) Mechano–electric feedback in right atrium after left ventricular infarction in rats. J Mol Cell Cardiol 32:465–477

    Article  CAS  PubMed  Google Scholar 

  20. Kamkin A, Kiseleva I, Wagner KD, Bohm J, Theres H, Günther J, Scholz H (2003) Characterization of stretch–activated ion currents in isolated atrial myocytes from human hearts. Pflügers Arch 446 (3):339–346

    CAS  PubMed  Google Scholar 

  21. Kamkin A, Kiseleva I, Isenberg G (2003) Activation and inactivation of a nonselective cation conductance by local mechanical deformation of acutely isolated cardiac fibroblasts. Cardiovasc Res 57 (3):793–803

    Article  CAS  PubMed  Google Scholar 

  22. Kamkin A, Kiseleva, I, Isenberg G, Wagner KD, Günther J, Theres H, Scholz H (2003) Cardiac fibroblasts and the mechano–electric feedback mechanism in healthy and diseased hearts. Prog Biophys Mol Biol 82 (1–3):111–120

    Article  CAS  PubMed  Google Scholar 

  23. Kamkin A, Kiseleva I, Isenberg G (2003) Ion selectivity of stretch–activated cation currents in mouse ventricular myocytes. Pflügers Arch 446 (2):220–231

    CAS  PubMed  Google Scholar 

  24. Kamkin A, Kiseleva I, Wagner KD, Lammerich A, Bohm J, Persson PB, Günther J (1999) Mechanically induced potentials in fibroblasts from human right atrium. Exp Physiol 84:347–356

    Google Scholar 

  25. Kamkin A, Kiseleva I, Wagner KD, Pylaev A, Leiterer KP, Theres H, Scholz H, Günther J, Isenberg G (2002) A possible role for atrial fibroblasts in postinfarction bradycardia. Am J Physiol 282:H842–H849

    CAS  Google Scholar 

  26. Kiseleva I, Kamkin A, Wagner KD, Theres H, Ladhoff A, Scholz H, Günther J, Lab MJ (2000) Mechano–electric feedback after left ventricular infarction in rats. Cardiovasc Res 45:370–378

    Article  CAS  PubMed  Google Scholar 

  27. Kiseleva IS, Kamkin AG, Kircheis R, Kositski GI (1978) Intercellular electrotonical interaction in the cardiac sinus node in the frog. Reports of Academy of Science of USSR 292 (6):1502–1505

    Google Scholar 

  28. Kiseleva I, Kamkin A, Leiterer KP, Kohl P (1993) Interaction of mechanosensitive cells with surrounding cells in the right atrium of the rat heart. J Mol Cell Cardiol 25 (suppl. 1):S76

    Google Scholar 

  29. Kiseleva I, Kamkin A, Kohl P, Lab M (1996) Calcium and mechanically induced potentials in fibroblasts of rat atrium. Cardiovasc Res 32:98–111

    Article  CAS  PubMed  Google Scholar 

  30. Kiseleva I, Kamkin A, Pylaev A, Kondratjev D, Leiterer KP, Theres H, Wagner KD, Persson PB, Günther J (1998) Electrophysiological properties of mechanosensitive atrial fibroblasts from chronic infarcted rat heart. J Mol Cell Cardiol 30 (6):1083–1093

    Article  CAS  PubMed  Google Scholar 

  31. Kohl P, Kamkin A, Kiseleva I, Streubel T (1992) Mechanosensitive cells in the atrium of frog Heart. Exp Physiol 77:213–216

    CAS  PubMed  Google Scholar 

  32. Kohl P, Kamkin AG, Kiseleva IS, Noble D (1994) Mechanosensitive fibroblasts in the sino–atrial node region of rat heart: interaction with cardiomyocytes and possible role. Exp Physiol 79:943–956

    Google Scholar 

  33. Kohl P, Noble D (1996) Mechanosensitive connective tissue: potential influence on heart rhythm. Cardiovasc Res 32:62–68

    Article  CAS  PubMed  Google Scholar 

  34. Kohl P (2003) Heterogeneous cell coupling in the heart: an electrophysiological role for fibroblasts. Circ Res 93:381–383

    Article  CAS  PubMed  Google Scholar 

  35. Larsen WJ, Azarnia R, Loewenstein WR (1977) Intercellular communication and tissue growth: IX. Junctional membrane structure of hybrids between communication– competent and communicationincompetent cells. J Membr Biol 34 (1):39–54

    CAS  PubMed  Google Scholar 

  36. Lathrop DA, Bailey JC (1977) Lack of electrical interaction between proximal bundle branches and subjacent muscle. J Appl Physiol 42 (2):235–239

    CAS  PubMed  Google Scholar 

  37. Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91:1103–1113

    Article  CAS  PubMed  Google Scholar 

  38. Mark GE, Strasser FF (1966) Pacemaker activity and mitosis in cultures of newborn rat heart ventricle cells. Exp Cell Res 44:217–233

    Article  CAS  PubMed  Google Scholar 

  39. Maziere de AMGL, Ginneken van ACG, Wilders R, Jongsma HJ, Bouman LN (1992) Spatial and functional relationship between myocytes and fibroblasts in the rabbit sinoatrial node. J Mol Cell Cardiol 24:567–578

    Article  PubMed  Google Scholar 

  40. Meghji P, Nazir SA, Dick DJ, Bailey ME, Johnson KJ, Lab MJ (1997) Regional workload induced changes in electrophysiology and immediate early gene expression in intact in situ porcine heart. J Mol Cell Cardiol 29:3147–3155

    Article  CAS  PubMed  Google Scholar 

  41. Moreno AP (2004) Biophysical properties of homomeric and heteromultimeric channels formed by cardiac connexins. Cardiovasc Res 62:276–286

    Article  CAS  PubMed  Google Scholar 

  42. Naccarella F, Lepera G, Rolli A (2000) Arrhythmic risk stratification of postmyocardial infarction patients. Curr Opin Cardiol 15:1–6

    Article  CAS  PubMed  Google Scholar 

  43. Nazir SA, Lab MJ (1996) Mechanoelectric feedback and atrial arrhythmias. Cardiovasc Res 32 (1):52–61

    Article  CAS  PubMed  Google Scholar 

  44. O’Lague P, Dalen H, Rubin H, Tobias C (1970) Electrical coupling: low resistance junctions between mitotic and interphase fibroblasts in tissue culture. Science 170 (956):464–466

    CAS  PubMed  Google Scholar 

  45. Oyamada M, Kimura H, Oyamada Y, Miyamoto A, Ohshika H, Mori M (1994) The expression, phosphorylation, and localization of connexin43 and gap–junctional intercellular communication during the establishment of a synchronized contraction of cultured neonatal rat cardiac myocytes. Exp Cell Res 212 (2):351–358

    Google Scholar 

  46. Poburko D, Lhote P, Szado T, Behra T, Rahimian R, McManus B, van Breemen C, Ruegg UT (2004) Basal calcium entry in vascular smooth muscle. Eur J Pharmacol 505:19–29

    Article  CAS  PubMed  Google Scholar 

  47. Ravens U (2003) Mechano–electric feedback and arrhythmias. Prog Biophys Mol Biol 82(1–3):255–266

    Article  PubMed  Google Scholar 

  48. Rohr S (2004) Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc Res 62:309–322

    Article  CAS  PubMed  Google Scholar 

  49. Rook MB, Jongsma HJ, deJonge B (1989) Single channel currents of homo– and heterologous gap junctions between cardiac fibroblasts and myocytes. Pflügers Arch 414:95–98

    Article  CAS  PubMed  Google Scholar 

  50. Rook MB, Jongsma HJ, van Ginneken ACG (1988) Properties of single gap junctional channels between isolated neonatal rat heart cells. Am J Physiol 255:H770–H782

    CAS  PubMed  Google Scholar 

  51. Rook MB, Jonge B de, Jongsma HJ, Masson–Pevet MA (1990) Gap junction formation and functional interaction between neonatal rat cardiocytes in culture: a correlative physiological and ultrastructural study. J Membrane Biol 118:179–192

    CAS  Google Scholar 

  52. Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132:1–77

    CAS  PubMed  Google Scholar 

  53. Saffitz JE, Kanter HL, Green KG, Tolley TK, Beyer EC (1994) Tissue–specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ Res 74:1065–1070

    CAS  PubMed  Google Scholar 

  54. Saltman AE, Aksehirli TO, Valiunas V et al. (2002) Gap junction uncoupling protects the heart against ischemia. J Thorac Cardiovasc Surg 124:371–376

    Article  CAS  PubMed  Google Scholar 

  55. Schulz R, Heusch G (2004) Connexin 43 and ischemic preconditioning. Cardiovasc Res 62:335–344

    Article  CAS  Google Scholar 

  56. Severs NJ (1990) The cardiac gap junction and intercalated disc. Int J Cardiol 26:137–173

    Article  CAS  PubMed  Google Scholar 

  57. Severs NJ (1994) Pathophysiology of gap junction in heart disease. J Cardiovasc Electrophysiol 5:462–475

    CAS  PubMed  Google Scholar 

  58. Shiraishi I, Takamatsu T, Mimikawa T, Onouchi Z, Fujita S (1992) Quantitative histological analysis of the human sinoatrial node during growth and aging. Circulation 85:2176–2184

    CAS  PubMed  Google Scholar 

  59. Sukharev S, Anishkin A (2004) Mechanosensitive channels: what can we learn from ‘simple’ model systems? Trends Neurosci 27 (6):345–351

    Article  CAS  PubMed  Google Scholar 

  60. Söhl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62 (2):228–232

    Article  PubMed  Google Scholar 

  61. Taggart P (1996) Mechano–electric feedback in the human heart. Cardiovasc Res 32 (1):38–43

    Article  CAS  PubMed  Google Scholar 

  62. Takens–Kwak BR, Jongsma HJ (1992) Cardiac gap junctions: three distinct single channel conductances and their modulation by phosphorylating treatments. Pflügers Arch 422 (2):198–200

    Article  CAS  PubMed  Google Scholar 

  63. Underwood RD, Sra J, Akhtar M (1997) Evaluation and treatment strategies in patients at high risk of sudden death post myocardial infarction. Clin Cardiol 20:753–758

    CAS  PubMed  Google Scholar 

  64. Veen van TAB, Rijen van HVM, Opthof T (2001) Cardiac gap junction channels: modulation of expression and channel properties. Cardiovasc Res 51:217–229

    Article  PubMed  Google Scholar 

  65. Veenstra RD (1990) Voltage–dependent, gating of gap junction channels in embryonic chick venticular pairs. Am J Physiol 258:C662–C672

    CAS  PubMed  Google Scholar 

  66. Yue H, Uzui H, Lee JD, Shimizu H, Ueda T (2004) Effects of magnesium on matrix metalloproteinase–2 production in cultured rat cardiac fibroblasts. Basic Res Cardiol 99:257–263

    Article  CAS  PubMed  Google Scholar 

  67. Zeng T, Bett GCL, Sachs F (2000) Stretchactivated whole cell currents in adult rat cardiac myocytes. Am J Physiol 278:H548–H557

    CAS  Google Scholar 

  68. Zhang YH, Youm JB, Sung HK, Lee SH, Ryu SY, Ho WK, Earm YE (2000) Stretchactivated and background non–selective cation channels in rat atrial myocytes. J Physiol 523 (3):607–619

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Scholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamkin, A., Kiseleva, I., Lozinsky, I. et al. Electrical interaction of mechanosensitive fibroblasts and myocytes in the heart. Basic Res Cardiol 100, 337–345 (2005). https://doi.org/10.1007/s00395-005-0529-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0529-4

Key words

Navigation