Skip to main content

Advertisement

Log in

Prebiotics modulate the microbiota–gut–brain axis and ameliorate cognitive impairment in APP/PS1 mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Prebiotics, including fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), stimulate beneficial gut bacteria and may be helpful for patients with Alzheimer’s disease (AD). This study aimed to compare the effects of FOS and GOS, alone or in combination, on AD mice and to identify their underlying mechanisms.

Methods

Six-month-old APP/PS1 mice and wild-type mice were orally administered FOS, GOS, FOS + GOS or water by gavage for 6 weeks and then subjected to relative assays, including behavioral tests, biochemical assays and 16S rRNA sequencing.

Results

Through behavioral tests, we found that GOS had the best effect on reversing cognitive impairment in APP/PS1 mice, followed by FOS + GOS, while FOS had no effect. Through biochemical techniques, we found that GOS and FOS + GOS had effects on multiple targets, including diminishing Aβ burden and proinflammatory IL-1β and IL-6 levels, and changing the concentrations of neurotransmitters GABA and 5-HT in the brain. In contrast, FOS had only a slight anti-inflammatory effect. Moreover, through 16S rRNA sequencing, we found that prebiotics changed composition of gut microbiota. Notably, GOS increased relative abundance of Lactobacillus, FOS increased that of Bifidobacterium, and FOS + GOS increased that of both. Furthermore, prebiotics downregulated the expression levels of proteins of the TLR4-Myd88-NF-κB pathway in the colons and cortexes, suggesting the involvement of gut–brain mechanism in alleviating neuroinflammation.

Conclusion

Among the three prebiotics, GOS was the optimal one to alleviate cognitive impairment in APP/PS1 mice and the mechanism was attributed to its multi-target role in alleviating Aβ pathology and neuroinflammation, changing neurotransmitter concentrations, and modulating gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data used during the study are available from the corresponding author by request.

Abbreviations

AD:

Alzheimer’s disease

APP/PS1:

APPswe/PS1dE9 transgenic mice

WT:

Wild-type

Tg:

Transgenic

FOS:

Fructo-oligosaccharides

GOS:

Galacto-oligosaccharides

GABA:

Gamma-aminobutyric acid

5-HT:

5-Hydroxytryptamine

Ach:

Acetylcholine

Glu:

Glutamate

Gln:

l-Glutamine

DA:

Dopamine

5-HIAA:

5-Hydroxyindole acetic acid

NMDA:

N-Methyl-d-aspartate

LPS:

Lipopolysaccharide

TLR4:

Toll like receptor 4

TLRs:

Toll like receptors

Myd88:

Myeloid differentiation primary response gene 88

NF-κB:

Nuclear factor-κB

IL-6:

Interleukin 6

IL-1β:

Interleukin 1β

TNF-α:

Tumor necrosis factor α

IL-10:

Interleukin 10

CNS:

Central nervous system

GluN1:

N-Methyl-aspartate receptor subunit 1

GluN2B:

N-Methyl-aspartate receptor subunit 2B

GluR1:

Glutamate AMPA receptor subunit A1

GluR2:

Glutamate AMPA receptor subunit A2

LC/MS:

Liquid chromatography/mass spectrometry

SCFAs:

Short-chain fatty acids

OF:

Open field test

NOR:

Novel object recognition test

EPM:

Elevated plus maze test

ST:

Social test

MWM:

Morris water maze test

IHC:

Immunohistochemistry staining

WB:

Western blot

RTPCR:

Reverse transcriptase polymerase chain reaction

IBA1:

Ionized calcium-binding adaptor 1

GFAP:

Glial fibrillary acidic protein

ASD:

Autism spectrum disorder

References

  1. Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23(10):1183–1193. https://doi.org/10.1038/s41593-020-0687-6

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe D (2021) Treatments for Alzheimer’s disease emerge. Science (New York, NY) 373(6555):624–626. https://doi.org/10.1126/science.abi6401

    Article  CAS  Google Scholar 

  3. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2020) Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement (N Y) 6(1):e12050. https://doi.org/10.1002/trc2.12050

    Article  PubMed  Google Scholar 

  4. Morais L, Schreiber H, Mazmanian S (2021) The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol 19(4):241–255. https://doi.org/10.1038/s41579-020-00460-0

    Article  CAS  PubMed  Google Scholar 

  5. Cryan J, O’Riordan K, Sandhu K, Peterson V, Dinan T (2020) The gut microbiome in neurological disorders. Lancet Neurol 19(2):179–194. https://doi.org/10.1016/s1474-4422(19)30356-4

    Article  CAS  PubMed  Google Scholar 

  6. Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, Stanton C, Dinan TG, Cryan JF (2017) Targeting the microbiota–gut–brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry 82(7):472–487. https://doi.org/10.1016/j.biopsych.2016.12.031

    Article  CAS  PubMed  Google Scholar 

  7. Varesi A, Pierella E, Romeo M, Piccini G, Alfano C, Bjørklund G, Oppong A, Ricevuti G, Esposito C, Chirumbolo S, Pascale A (2022) The potential role of gut microbiota in Alzheimer’s disease: from diagnosis to treatment. Nutrients. https://doi.org/10.3390/nu14030668

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen DL, Yang X, Yang J, Lai GX, Yong TQ, Tang XC, Shuai O, Zhou GL, Xie YZ, Wu QP (2017) Prebiotic effect of fructooligosaccharides from morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota–gut–brain axis. Front Aging Neurosci 9:403. https://doi.org/10.3389/fnagi.2017.00403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun J, Liu S, Ling Z, Wang F, Ling Y, Gong T, Fang N, Ye S, Si J, Liu J (2019) Fructooligosaccharides ameliorating cognitive deficits and neurodegeneration in APP/PS1 transgenic mice through modulating gut microbiota. J Agric Food Chem 67(10):3006–3017. https://doi.org/10.1021/acs.jafc.8b07313

    Article  CAS  PubMed  Google Scholar 

  10. Yang D, Qiao J, Wang JX, Wei WY, Zhao ZX, Cai HY (2021) Effects of B-GOS on cognitive behavior and depression of transgenic mice with Alzheimer’s disease. Zhongguo Ying Yong Sheng Li Xue Za Zhi 37(3):240–246. https://doi.org/10.12047/j.cjap.6105.2021.028

    Article  PubMed  Google Scholar 

  11. Veereman-Wauters G, Staelens S, Van de Broek H, Plaskie K, Wesling F, Roger L, McCartney A, Assam P (2011) Physiological and bifidogenic effects of prebiotic supplements in infant formulae. J Obstet Gynecol Neonatal Nurs 52(6):763–771. https://doi.org/10.1097/MPG.0b013e3182139f39

    Article  CAS  Google Scholar 

  12. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20(2):145–155. https://doi.org/10.1038/nn.4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ganz T, Fainstein N, Elad A, Lachish M, Goldfarb S, Einstein O, Ben-Hur T (2022) Microbial pathogens induce neurodegeneration in Alzheimer’s disease mice: protection by microglial regulation. J Neuroinflammation 19(1):5. https://doi.org/10.1186/s12974-021-02369-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kilic U, Elibol B, Uysal O, Kilic E, Yulug B, Sayin Sakul A, Babacan Yildiz G (2018) Specific alterations in the circulating levels of the SIRT1, TLR4, and IL7 proteins in patients with dementia. Exp Gerontol 111:203–209. https://doi.org/10.1016/j.exger.2018.07.018

    Article  CAS  PubMed  Google Scholar 

  15. Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi S, Nabavi S (2017) Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev 36:11–19. https://doi.org/10.1016/j.arr.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  16. Yang X, Yu D, Xue L, Li H, Du J (2020) Probiotics modulate the microbiota–gut–brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B 10(3):475–487. https://doi.org/10.1016/j.apsb.2019.07.001

    Article  CAS  PubMed  Google Scholar 

  17. Esquerda-Canals G, Montoliu-Gaya L, Güell-Bosch J, Villegas S (2017) Mouse models of Alzheimer’s disease. J Alzheimers Dis 57(4):1171–1183. https://doi.org/10.3233/JAD-170045

    Article  CAS  PubMed  Google Scholar 

  18. Zhang SJ, Zhang JX, Wei DF, An HT, Liu W, Lai YH, Yang T, Shao W, Huang YP, Wang L, Dou F, Peng DT, Zhang ZJ (2020) Dengzhan Shengmai capsules and their active component scutellarin prevent cognitive decline in APP/PS1 mice by accelerating A beta aggregation and reducing oligomers formation. Biomed Pharmacother 121:109682. https://doi.org/10.1016/j.biopha.2019.109682

    Article  CAS  PubMed  Google Scholar 

  19. Hur K-H, Kim S-E, Lee B-R, Ko Y-H, Seo J-Y, Kim S-K, Ma S-X, Kim Y-J, Jeong Y, Pham DT, Trinh QD, Shin E-J, Kim H-C, Lee Y-S, Lee S-Y, Jang C-G (2020) 25C-NBF, a new psychoactive substance, has addictive and neurotoxic potential in rodents. Arch Toxicol 94(7):2505–2516. https://doi.org/10.1007/s00204-020-02740-3

    Article  CAS  PubMed  Google Scholar 

  20. Silverman JL, Oliver CF, Karras MN, Gastrell PT, Crawley JN (2013) AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology 64:268–282. https://doi.org/10.1016/j.neuropharm.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  21. Faure A, Nosjean A, Pittaras E, Duchene A, Andrieux A, Gory-Faure S, Charveriat M, Granon S (2019) Dissociated features of social cognition altered in mouse models of schizophrenia: focus on social dominance and acoustic communication. Neuropharmacology 159:107334. https://doi.org/10.1016/j.neuropharm.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  22. Cheng F, Cappai R, Ciccotosto GD, Svensson G, Multhaup G, Fransson LA, Mani K (2011) Suppression of amyloid beta A11 antibody immunoreactivity by vitamin C: possible role of heparan sulfate oligosaccharides derived from glypican-1 by ascorbate-induced, nitric oxide (NO)-catalyzed degradation. J Biol Chem 286(31):27559–27572. https://doi.org/10.1074/jbc.M111.243345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aidt FH, Hasholt LF, Christiansen M, Laursen H (2013) Localization of A11-reactive oligomeric species in prion diseases. Histopathology 62(7):994–1001. https://doi.org/10.1111/his.12097

    Article  PubMed  Google Scholar 

  24. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179(2):312–339. https://doi.org/10.1016/j.cell.2019.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kandimalla R, Reddy PH (2017) Therapeutics of neurotransmitters in Alzheimer’s disease. J Alzheimers Dis 57(4):1049–1069. https://doi.org/10.3233/jad-161118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Liu Z, Ji B, Liu L, Wu S, Liu X, Wang S, Wang L (2018) Metabolite profile of Alzheimer’s disease in the frontal cortex as analyzed by HRMAS 1H NMR. Front Aging Neurosci 10:424. https://doi.org/10.3389/fnagi.2018.00424

    Article  CAS  PubMed  Google Scholar 

  27. Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, Bae JY, Kim T, Lee J, Chun H, Park HJ, Lee DY, Hong J, Kim HY, Oh SJ, Park SJ, Lee H, Yoon BE, Kim Y, Jeong Y, Shim I, Bae YC, Cho J, Kowall NW, Ryu H, Hwang E, Kim D, Lee CJ (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med 20(8):886–896. https://doi.org/10.1038/nm.3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang X, Wang L, Wu H, Jiao L (2018) Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut–brain axis. BMC Anesthesiol 18(1):177. https://doi.org/10.1186/s12871-018-0642-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park M, Shin M, Mun D, Jeong S, Jeong D, Song M, Ko G, Unno T, Kim Y, Oh S (2020) Probiotic Lactobacillus fermentum strain JDFM216 improves cognitive behavior and modulates immune response with gut microbiota. Sci Rep 10(1):21701. https://doi.org/10.1038/s41598-020-77587-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaydi A, Lew L, Hor Y, Jaafar M, Chuah L, Yap K, Azlan A, Azzam G, Liong M (2020) Lactobacillus plantarum DR7 improved brain health in aging rats via the serotonin, inflammatory and apoptosis pathways. Benef Microbes 11(8):753–766. https://doi.org/10.3920/bm2019.0200

    Article  CAS  PubMed  Google Scholar 

  32. Cao J, Amakye W, Qi C, Liu X, Ma J, Ren J (2021) Bifidobacterium Lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer’s disease in the APP/PS1 mouse model. Eur J Nutr 60(7):3757–3769. https://doi.org/10.1007/s00394-021-02543-x

    Article  CAS  PubMed  Google Scholar 

  33. Kruger JF, Hillesheim E, Pereira A, Camargo CQ, Rabito EI (2021) Probiotics for dementia: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 79(2):160–170. https://doi.org/10.1093/nutrit/nuaa037

    Article  PubMed  Google Scholar 

  34. Tamtaji O, Heidari-Soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, Tajabadi-Ebrahimi M, Asemi Z (2019) Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: a randomized, double-blind, controlled trial. Clin Nutr 38(6):2569–2575. https://doi.org/10.1016/j.clnu.2018.11.034

    Article  CAS  PubMed  Google Scholar 

  35. Heeney DD, Gareau MG, Marco ML (2018) Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr Opin Biotechnol 49:140–147. https://doi.org/10.1016/j.copbio.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  36. Tian B, Zhao J, Zhang M, Chen Z, Ma Q, Liu H, Nie C, Zhang Z, An W, Li J (2021) Lycium ruthenicum anthocyanins attenuate high-fat diet-induced colonic barrier dysfunction and inflammation in mice by modulating the gut microbiota. Mol Nutr Food Res 65(8):e2000745. https://doi.org/10.1002/mnfr.202000745

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Mu T, Jia H, Yang Y, Wu Z (2021) Protective effects of glycine against lipopolysaccharide-induced intestinal apoptosis and inflammation. Amino Acids. https://doi.org/10.1007/s00726-021-03011-w

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu S, Zuo J, Cheng Y, Zhang Y, Zhang Z, Wu M, Yang Y, Tong H (2021) Ethanol extract of Sargarsum fusiforme alleviates HFD/STZ-induced hyperglycemia in association with modulation of gut microbiota and intestinal metabolites in type 2 diabetic mice. Food Res Int 147:110550. https://doi.org/10.1016/j.foodres.2021.110550

    Article  CAS  PubMed  Google Scholar 

  39. van de Wouw M, Walsh CJ, Vigano GMD, Lyte JM, Boehme M, Gual-Grau A, Crispie F, Walsh AM, Clarke G, Dinan TG, Cotter PD, Cryan JF (2021) Kefir ameliorates specific microbiota–gut–brain axis impairments in a mouse model relevant to autism spectrum disorder. Brain Behav Immun 97:119–134. https://doi.org/10.1016/j.bbi.2021.07.004

    Article  CAS  PubMed  Google Scholar 

  40. Soukup ST, Stoll DA, Danylec N, Schoepf A, Kulling SE, Huch M (2021) Metabolism of daidzein and genistein by gut bacteria of the class coriobacteriia. Foods (Basel, Switzerland) 10(11):2741. https://doi.org/10.3390/foods10112741

    Article  CAS  PubMed  Google Scholar 

  41. Rodríguez-Daza MC, Roquim M, Dudonné S, Pilon G, Levy E, Marette A, Roy D, Desjardins Y (2020) Berry polyphenols and fibers modulate distinct microbial metabolic functions and gut microbiota enterotype-like clustering in obese mice. Front Microbiol 11:2032. https://doi.org/10.3389/fmicb.2020.02032

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu M, Mo X, Huang H, Chen X, Liu H, Peng Z, Chen L, Rong S, Yang W, Xu S, Liu L (2020) Yeast β-glucan alleviates cognitive deficit by regulating gut microbiota and metabolites in Aβ-induced AD-like mice. Int J Biol Macromol 161:258–270. https://doi.org/10.1016/j.ijbiomac.2020.05.180

    Article  CAS  PubMed  Google Scholar 

  43. Tsering J, Chen Q, Li H, Han Y, Wu J, Yin H, Hu J, Su S, Shi X, Hu X, Che B (2022) Effects of the Tibetan medicine Byur dMar Nyer lNga Ril Bu on Alzheimer’s disease in mice models. J Ethnopharmacol 283:114724. https://doi.org/10.1016/j.jep.2021.114724

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Yu C, Li R, Liu K, Jin G, Ge R, Tang F, Cui S (2020) High-altitude Tibetan fermented milk ameliorated cognitive dysfunction by modified gut microbiota in Alzheimer’s disease transgenic mice. Food Funct 11(6):5308–5319. https://doi.org/10.1039/c9fo03007g

    Article  CAS  PubMed  Google Scholar 

  45. Bloemendaal M, Szopinska-Tokov J, Belzer C, Boverhoff D, Papalini S, Michels F, van Hemert S, Arias Vasquez A, Aarts E (2021) Probiotics-induced changes in gut microbial composition and its effects on cognitive performance after stress: exploratory analyses. Transl Psychiatry 11(1):300. https://doi.org/10.1038/s41398-021-01404-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou Y, Zhang M, Zhao X, Feng J (2021) Ammonia exposure induced intestinal inflammation injury mediated by intestinal microbiota in broiler chickens via TLR4/TNF-α signaling pathway. Ecotoxicol Environ Saf 226:112832. https://doi.org/10.1016/j.ecoenv.2021.112832

    Article  CAS  PubMed  Google Scholar 

  47. Hu R, Wei P, Jin L, Zheng T, Chen WY, Liu XY, Shi XD, Hao JR, Sun N, Gao C (2017) Overexpression of EphB2 in hippocampus rescues impaired NMDA receptors trafficking and cognitive dysfunction in Alzheimer model. Cell Death Dis 8(3):e2717. https://doi.org/10.1038/cddis.2017.140

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (Grant number 81974220), the Central Health Research Project (Grant number 2020ZD10), the National Science Fund for Distinguished Young Scholars (Grant number 81625025), and the Cultivated Fund of Capital Medical University (Grant number QNPY2022002, PYZ22051).

Author information

Authors and Affiliations

Authors

Contributions

DP, ZZ and WS designed research; SZ, SL, YL, DW, XZ, XN, and ZY performed research; SZ and SL analyzed data; and SZ, SL, DP and ZZ wrote the paper. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Weiqun Song, Zhanjun Zhang or Dantao Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Lv, S., Li, Y. et al. Prebiotics modulate the microbiota–gut–brain axis and ameliorate cognitive impairment in APP/PS1 mice. Eur J Nutr 62, 2991–3007 (2023). https://doi.org/10.1007/s00394-023-03208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03208-7

Keywords

Navigation