Skip to main content

Advertisement

Log in

Soybean glycinin and β-conglycinin damage the intestinal barrier by triggering oxidative stress and inflammatory response in weaned piglets

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Soybean glycinin (11S) and β-conglycinin (7S) are major antigenic proteins in soybean and can induce a variety of allergic reactions in the young animals. This study aimed to investigate the effect of 7S and 11S allergens on the intestine of piglets.

Methods

Thirty healthy 21-day-old weaned “Duroc × Long White × Yorkshire” piglets were randomly divided into three groups fed with the basic diet, the 7S supplemented basic diet, or the 11S supplemented basic diet for 1 week. Allergy markers, intestinal permeability, oxidative stress, and inflammatory reactions were detected, and we observed different sections of intestinal tissue. The expressions of genes and proteins related to NOD-like receptor thermal protein domain associated protein 3 (NLRP-3) signaling pathway were detected by IHC, RT-qPCR, and WB.

Results

Severe diarrhea and decreased growth rate were observed in the 7S and 11S groups. Typical allergy markers include IgE production and significant elevations of histamine and 5-hydroxytryptamine (5-HT). More aggressive intestinal inflammation and barrier dysfunction were observed in the experimental weaned piglets. In addition, 7S and 11S supplementation increased the levels of 8-hydroxy-2 deoxyguanosine (8-OHdG) and nitrotyrosine, triggering oxidative stress. Furthermore, higher expression levels of NLRP-3 inflammasome ASC, caspase-1, IL-1β, and IL-18 were observed in the duodenum, jejunum, and ileum.

Conclusion

We confirmed that 7S and 11S damaged the intestinal barrier of weaned piglets and may be associated with the onset of oxidative stress and inflammatory response. However, the molecular mechanism underlying these reactions deserves further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Kim S, Lee J, Kwon Y, Kim W, Jung G, Kim D, Lee C, Lee Y, Kim M, Kim Y et al (2013) Introduction and nutritional evaluation of germinated soy germ. Food Chem 136(2):491–500. https://doi.org/10.1016/j.foodchem.2012.08.022

    Article  CAS  PubMed  Google Scholar 

  2. Kim D, Quang T, Yoon C, Ngan N, Lim S, Lee S, Kim Y (2016) Anti-neuroinflammatory activities of indole alkaloids from kanjang (Korean fermented soy source) in lipopolysaccharide-induced BV2 microglial cells. Food Chem 213(2016):69–75. https://doi.org/10.1016/j.foodchem.2016.06.068

    Article  CAS  PubMed  Google Scholar 

  3. Suo H, Feng X, Zhu K, Wang C, Zhao X, Kan J (2015) Shuidouchi (Fermented Soybean) fermented in different vessels attenuates HCl/ethanol-induced gastric mucosal injury. Molecules 20(11):19748–19763. https://doi.org/10.3390/molecules201119654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He L, Han M, Qiao S, He P, Li D, Li N (2015) Soybean antigen proteins and their intestinal sensitization activities. Curr Protein Pept Sci 16:613–621. https://doi.org/10.2174/1389203716666150630134602

    Article  CAS  PubMed  Google Scholar 

  5. Krishnan H, Kim W, Jang S, Kerley M (2009) All three subunits of soybean beta-conglycinin are potential food allergens. J Agric Food Chem 57(3):938–943. https://doi.org/10.1021/jf802451g

    Article  CAS  PubMed  Google Scholar 

  6. Tang C (2017) Emulsifying properties of soy proteins: a critical review with emphasis on the role of conformational flexibility. Crit Rev Food Sci Nutr 57(12):2636–2679. https://doi.org/10.1080/10408398.2015.1067594

    Article  CAS  PubMed  Google Scholar 

  7. Yaklich RW (2001) β-Conglycinin and glycinin in high-protein soybean seeds. J Agric Food Chem 49(2):729–735. https://doi.org/10.1021/jf001110s

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Wang J, Song P, Ma X (2014) Determination of glycinin in soybean and soybean products using a sandwich enzyme-linked immunosorbent assay. Food Chem 162:27–33. https://doi.org/10.1016/j.foodchem.2014.04.065

    Article  CAS  PubMed  Google Scholar 

  9. Dick K, Pattang A, Hooker J, Nissan N, Sadowski M, Barnes B, Tan LH, Burnside D, Phanse S, Aoki H, Babu M, Dehne F, Golshani A, Cober ER, Green JR, Samanfar B (2021) Human-soybean allergies: elucidation of the seed proteome and comprehensive protein-protein interaction prediction. J Proteome Res 20(11):4925–4947. https://doi.org/10.1021/acs.jproteome.1c00138

    Article  CAS  PubMed  Google Scholar 

  10. He Y, Liang J, Dong X, Liu H, Yang Q, Zhang S, Chi S, Tan B (2022) Soybean β-conglycinin and glycinin reduced growth performance and the intestinal immune defense and altered microbiome in juvenile pearl gentian groupers Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂. Anim Nutr 8(9):193–203. https://doi.org/10.1016/j.aninu.2021.11.0012405-6545

    Article  Google Scholar 

  11. Zheng S, Qin G, Tian H, Sun Z (2014) Role of soybean β-conglycinin subunits as potential dietary allergens in piglets. Vet J 199(3):434–438. https://doi.org/10.1016/j.tvjl.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  12. Moneret-Vautrin D, Morisset M, Flabbee J, Beaudouin E, Kanny G (2005) Epidemiology of life-threatening and lethal anaphylaxis: a review. Allergy 60:443–451. https://doi.org/10.1111/j.1398-9995.2005.00785.x

    Article  CAS  PubMed  Google Scholar 

  13. Peng C, Cao C, He M, Shu Y, Tang X, Wang Y (2018) Soybean Glycinin- and β-conglycinin-induced intestinal damage in piglets via the p38/JNK/NF-κB signaling pathway. J Agric Food Chem 66:9534–9541. https://doi.org/10.1021/acs.jafc.8b03641

    Article  CAS  PubMed  Google Scholar 

  14. Aviello G, Knaus U (2017) ROS in gastrointestinal inflammation: rescue or sabotage? Br J Pharmaco 174:1704–1718. https://doi.org/10.1111/bph.13428

    Article  CAS  Google Scholar 

  15. Kinoshita Y, Ishimura N, Ishihara S (2018) Advantages and disadvantages of long-term proton pump inhibitor use. J Neurogastroenterol Motil 24:182–196. https://doi.org/10.5056/jnm18001

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tourkochristou E, Aggeletopoulou I, Konstantakis C, Triantos C (2019) Role of NLRP-3 inflammasome in inflammatory bowel diseases. World J Gastroenterol 25:4796–4804. https://doi.org/10.3748/wjg.v25.i33.4796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhen Y, Zhang H (2019) NLRP-3 inflammasome and inflammatory bowel disease. Front Immunol 10:276. https://doi.org/10.3389/fimmu.2019.00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma H, Shu Q, Li Z, Song X, Xu H (2023) Formaldehyde aggravates allergic contact dermatitis by facilitating NLRP3 inflammasome activation in macrophages. Int Immunopharmacol 117:109904. https://doi.org/10.1016/j.intimp.2023.109904

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, Sun Z, Xie W, Peng C, Ding H, Li Y (2022) 11S glycinin up-regulated NLRP-3-induced pyroptosis by triggering reactive oxygen species in porcine intestinal epithelial cells. Front Vet Sci 9:890978. https://doi.org/10.3389/fvets.2022.890978

    Article  PubMed  PubMed Central  Google Scholar 

  20. Parrish A, Boudaud M, Kuehn A, Ollert M, Desai M (2022) Intestinal mucus barrier: a missing piece of the puzzle in food allergy. Trends Mol Med 28(1):36–50. https://doi.org/10.1016/j.molmed.2021.10.004

    Article  CAS  PubMed  Google Scholar 

  21. Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López J, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP (2021) Perinatal and early-life nutrition, epigenetics, and allergy. Nutrients 13(3):724. https://doi.org/10.3390/nu13030724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thorpe D, Stringer A, Butler R (2013) Chemotherapy-induced mucositis: the role of mucin secretion and regulation, and the enteric nervous system. Neurotoxicology 38:101–105. https://doi.org/10.1016/j.neuro.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  23. Zhang KY, Hornef MW, Dupont A (2015) The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiol 17:1561–1569. https://doi.org/10.1111/cmi.12501

    Article  CAS  PubMed  Google Scholar 

  24. Shi L, Xun W, Peng W, Hu H, Cao T, Hou G (2020) Effect of the single and combined use of curcumin and piperine on growth performance, intestinal barrier function, and antioxidant capacity of weaned Wuzhishan Piglets. Front Vet Sci 7:418. https://doi.org/10.3389/fvets.2020.00418

    Article  PubMed  PubMed Central  Google Scholar 

  25. Henrichs B, Brost K, Hayes C, Campbell J, Drackley J (2021) Effects of spray-dried bovine plasma protein in milk replacers fed at a high plane of nutrition on performance, intestinal permeability, and morbidity of Holstein calves. J Dairy Sci 104:7856–7870. https://doi.org/10.3168/jds.2020-20104

    Article  CAS  PubMed  Google Scholar 

  26. Choi J, Jin S, Park B, Kim H, Khanal T (2013) Cultivated ginseng inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice and TNF-α/IFN-γ-induced TARC activation in HaCaT cells. Food Chem Toxicol 56:195–203. https://doi.org/10.1016/j.fct.2013.02.037

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Lin J, Shu J, Li H, Ren Z (2018) Oxidative damage and DNA damage in lungs of an ovalbumin-induced asthmatic murine model. J Thorac Dis 10:4819–4830. https://doi.org/10.21037/jtd.2018.07.74

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meng Y, Xu X, Xie G, Zhang Y, Chen S, Qiu Y (2022) Alkyl organophosphate flame retardants (OPFRs) induce lung inflammation and aggravate OVA-simulated asthmatic response via the NF-кB signaling pathway. Environ Int 163:107209. https://doi.org/10.1016/j.envint.2022.107209

    Article  CAS  PubMed  Google Scholar 

  29. Wang J (2016) Utility of component diagnostic testing in guiding oral food challenges to milk and egg. Allergy Asthma Proc 37(6):439–442. https://doi.org/10.2500/aap.2016.37.3997

    Article  PubMed  Google Scholar 

  30. Qu Q, Song X, Lin L, Gong Z, Xu W, Xiao W (2022) L-theanine modulates intestine-specific immunity by regulating the differentiation of CD4+ T cells in ovalbumin-sensitized mice. J Agric Food Chem 70(47):14851–14863. https://doi.org/10.1021/acs.jafc.2c06171

    Article  CAS  PubMed  Google Scholar 

  31. Johansson S (2016) The discovery of IgE. J Allergy Clin Immunol 137:1671–1673. https://doi.org/10.1016/j.jaci.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  32. Gould H, Sutton B (2008) IgE in allergy and asthma today. Nat Rev Immunol 8(3):205–217. https://doi.org/10.1038/nri2273

    Article  CAS  PubMed  Google Scholar 

  33. Mandola A, Nozawa A, Eiwegger T (2019) Histamine, histamine receptors, and anti-histamines in the context of allergic responses. LymphoSign J 6:35–51. https://doi.org/10.14785/lymphosign-2018-0016

    Article  Google Scholar 

  34. Bischoff S (2009) Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 31(2):185–205. https://doi.org/10.1007/s00281-009-0165-4

    Article  CAS  PubMed  Google Scholar 

  35. Shulpekova Y, Nechaev V, Popova I, Deeva T, Kopylov A, Malsagova K, Kaysheva A, Ivashkin V (2021) Food intolerance: the role of histamine. Nutrients 13(9):3207. https://doi.org/10.3390/nu13093207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma B, Athari SS, Mehrabi Nasab E, Zhao L (2021) PI3K/AKT/mTOR and TLR4/MyD88/NF-κB signaling inhibitors attenuate pathological mechanisms of allergic asthma. Inflammation 44(5):1895–1907. https://doi.org/10.1007/s10753-021-01466-3

    Article  CAS  PubMed  Google Scholar 

  37. Vivinus-Nébot M, Dainese R, Anty R, Saint-Paul M, Nano J, Gonthier N (2012) Combination of allergic factors can worsen diarrheic irritable bowel syndrome: role of barrier defects and mast cells. Am J Gastroenterol 107(1):75–81. https://doi.org/10.1038/ajg.2011.315

    Article  CAS  PubMed  Google Scholar 

  38. Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015:610813. https://doi.org/10.1155/2015/610813

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xie J, Li B, Yao B, Zhang P, Wang L, Lu H, Song X (2020) Transforming growth factor-β1-regulated Fas/FasL pathway activation suppresses nucleus pulposus cell apoptosis in an inflammatory environment. Biosci Rep 40(2):BSR20191726. https://doi.org/10.1042/BSR20191726

  40. Naji K, Al-Shaibani E, Alhadi F, Al-Soudi S, D’souza M (2017) Hepatoprotective and antioxidant effects of single clove garlic against CCl-induced hepatic damage in rabbits. BMC Complem Altern M 17:411. https://doi.org/10.1186/s12906-017-1916-8

    Article  CAS  Google Scholar 

  41. Ruart M, Chavarria L, Camprecios G, Suarez-Herrera N, Montironi C, Guixe-Muntet S, Bosch J (2019) Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol 70(3):458–469. https://doi.org/10.1016/j.jhep.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  42. Hong M, Xu A, Zhou H, Wu L, Randers-Pehrson G, Santella RM, Yu Z, Hei TK (2010) Mechanism of genotoxicity induced by targeted cytoplasmic irradiation. Br J Cancer 103(8):1263–1268. https://doi.org/10.1038/sj.bjc.6605888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhuang A, Yang C, Liu Y, Tan Y, Bond S, Walker S, Sikora T, Laskowski A (2021) SOD2 in skeletal muscle: new insights from an inducible deletion model. Redox Biol 47(undefined):102135. https://doi.org/10.1016/j.redox.2021.102135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan L, Mishra R, Patel H, Alanazi S, Wei X, Ma Z, Garrett J (2020) BRAF mutant melanoma adjusts to BRAF/MEK inhibitors via dependence on increased antioxidant SOD2 and increased reactive oxygen species levels. Cancers (Basel). https://doi.org/10.3390/cancers12061661

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang H, Zhao F, Gai X, Cai J, Zhang X, Chen X, Zhu Y, Zhang Z (2022) Astilbin attenuates apoptosis induced by cadmium through oxidative stress in carp (Cyprinus carpio L.) head kidney lymphocyte. Fish Shellfish Immunol 125:230–237. https://doi.org/10.1016/j.fsi.2022.05.021

    Article  CAS  PubMed  Google Scholar 

  46. Wang F, Hong Y, Jiang W, Wang Y, Chen M, Zang D, Zhu Q (2022) ROS-mediated inflammatory response in liver damage via regulating the Nrf2/HO-1/NLRP3 pathway in mice with trichloroethylene hypersensitivity syndrome. J Immunotoxicol 19(1):100–108. https://doi.org/10.1080/1547691X.2022.2111003

    Article  CAS  PubMed  Google Scholar 

  47. Lee T, Song H, Park C (2014) Role of inflammasome activation in development and exacerbation of asthma. Asia Pac Allergy 4:187–196. https://doi.org/10.5415/apallergy.2014.4.4.187

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liston A, Masters S (2017) Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol 17(3):208–214. https://doi.org/10.1038/nri.2016.151

    Article  CAS  PubMed  Google Scholar 

  49. Fernandes-Alnemri T, Wu J, Yu J, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604. https://doi.org/10.1038/sj.cdd.4402194

    Article  CAS  PubMed  Google Scholar 

  50. Rajatava B, Sarah W, Suniti B, Zindl C (2015) IL-1 signaling modulates activation of STAT transcription factors to antagonize retinoic acid signaling and control the T(H)17 cell-iT(reg) cell balance. Nat Immunol 16(3):286–295. https://doi.org/10.1038/ni.3099

    Article  CAS  Google Scholar 

  51. Kim D, Jung W, Kim M, Lee H, Youn H, Seon J, Lee H, Lee J (2014) Genistein inhibits pro-inflammatory cytokines in human mast cell activation through the inhibition of the ERK pathway. Int J Mol Med 34(6):1669–1674. https://doi.org/10.3892/ijmm.2014.1956

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the professors at the College of Animal Science and Technology of Anhui Agricultural University.

Funding

This research was supported by the National Natural Science Foundation of China (No. 31972750).

Author information

Authors and Affiliations

Authors

Contributions

JW coordinated the project funding and technical support. LW and CP conceived and designed this research. LW conducted experiments and wrote manuscript. WL, SX, and SW collected experimental samples. JW, DH, YL, SF, XW, and CZ reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jinjie Wu or Xichun Wang.

Ethics declarations

Conflict of interest

All authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

All experiments were performed in accordance with the Regulations on the Administration of Laboratory Animals (Ministry of Science and Technology of China; revised in June 2004) and approved by the Ethics Committee of Anhui Agricultural University (Approval number 20210512).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, W., Xin, S. et al. Soybean glycinin and β-conglycinin damage the intestinal barrier by triggering oxidative stress and inflammatory response in weaned piglets. Eur J Nutr 62, 2841–2854 (2023). https://doi.org/10.1007/s00394-023-03188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03188-8

Keywords

Navigation