Skip to main content

Advertisement

Log in

Fecal metabonomics combined with 16S rDNA sequencing to analyze the changes of gut microbiota in rats fed with different protein source diets

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

When blended, animal and plant proteins can complement each other in terms of amino acid composition and release time. In this study, we investigated whether the blended protein diet has a better feeding effect than the single protein diet, and to reveal the differences in growth and intestinal microbiota composition caused by the blended protein diet.

Methods

Forty Sprague Dawley (SD) rats received diets with different protein sources, including casein (C), whey protein (WP), black soybean protein (BSP), and black soybean-whey blended protein (BS-WP), for eight weeks. To investigate the effects of blended protein supplement on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing and fecal metabolomics profiling. In addition, we determined growth and serum biochemical indices, and conducted intestinal morphology analyses.

Results

Compared to those in the BSP and WP groups, the daily body weight gain and feed conversion efficiency increased in the BS-WP group. Serum biochemical indices indicated that the protein utilization efficiency of the WP and BS-WP groups was relatively high, and the BS-WP blended protein diet improved the protein adoption rate. The BS-WP blended protein diet also improved intestinal tissue morphology and promoted intestinal villi development compared to the single protein diets. Furthermore, dietary protein altered the composition of gut microbiota, the gut microbial diversity of rats fed with the BS-WP diet was significantly (P < 0.05) higher than that of the other groups. The difference in dietary protein corresponded with an alteration of fecal amino acids and their metabolites, and tryptophan and tyrosine metabolism were the key mechanisms leading to the changes in fecal microbial composition.

Conclusion

Dietary protein sources played an important role in the growth and development of rats by influencing intestinal metabolism and microbial composition. The BS-WP blended protein diet was more conducive to nutrient absorption than the single protein diet. Furthermore, blended protein increased the diversity of intestinal microbes and aided the establishment of intestinal barrier function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available upon request from the corresponding author.

References

  1. Chen Z, Wang J, Liu W, Chen H (2017) Physicochemical characterization, antioxidant and anticancer activities of proteins from four legume species. J Food Sci Technol 54(4):964–972. https://doi.org/10.1007/s13197-016-2390-x

    Article  CAS  PubMed  Google Scholar 

  2. Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR (2004) Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc 36(12):2073–2081. https://doi.org/10.1249/01.mss.0000147582.99810.c5

    Article  CAS  PubMed  Google Scholar 

  3. Tang JE, Phillips SM (2009) Maximizing muscle protein anabolism: the role of protein quality. Curr Opin Clin Nutr Metab Care 12(1):66–71. https://doi.org/10.1097/MCO.0b013e32831cef75

    Article  CAS  PubMed  Google Scholar 

  4. Yang Y, Churchward-Venne TA, Burd NA, Breen L, Tarnopolsky MA, Phillips SM (2012) Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr Metab (Lond) 9(1):57. https://doi.org/10.1186/1743-7075-9-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu C, Yang J, Wu Q, Chen J, Yang X, Wang L, Jiang Z (2022) Low Protein Diet Improves Meat Quality and Modulates the Composition of Gut Microbiota in Finishing Pigs. Front Vet Sci 9:843957. https://doi.org/10.3389/fvets.2022.843957

  6. Farnfield MM, Trenerry C, Carey KA, Cameron-Smith D (2009) Plasma amino acid response after ingestion of different whey protein fractions. Int J Food Sci Nutr 60(6):476–486. https://doi.org/10.1080/09637480701833465

    Article  CAS  PubMed  Google Scholar 

  7. Zhao J, Zhang X, Liu H, Brown MA, Qiao S (2019) Dietary protein and gut microbiota composition and function. Curr Protein Pept Sci 20(2):145–154. https://doi.org/10.2174/1389203719666180514145437

    Article  CAS  PubMed  Google Scholar 

  8. O’Connor EM (2013) The role of gut microbiota in nutritional status. Curr Opin Clin Nutr Metab Care 16(5):509–516. https://doi.org/10.1097/MCO.0b013e3283638eb3

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Li Y, Tian Y, Huang C, Li D, Zhong Q, Ma X (2015) Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Curr Protein Pept Sci 16(7):592–603. https://doi.org/10.2174/1389203716666150630135720

    Article  CAS  PubMed  Google Scholar 

  10. Kelsen JR, Sullivan KE (2017) Inflammatory bowel disease in primary immunodeficiencies. Curr Allergy Asthma Rep 17(8):57. https://doi.org/10.1007/s11882-017-0724-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ford AC, Sperber AD, Corsetti M, Camilleri M (2020) Irritable bowel syndrome. Lancet 396(10263):1675–1688. https://doi.org/10.1016/s0140-6736(20)31548-8

    Article  CAS  PubMed  Google Scholar 

  12. Green M, Arora K, Prakash S (2020) Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. Int J Mol Sci 21 (8). https://doi.org/10.3390/ijms21082890

  13. Zhou Z, Sun B, Yu D, Zhu C (2022) Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 12:834485. https://doi.org/10.3389/fcimb.2022.834485

  14. Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L (2012) Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. Isme j 6(10):1848–1857. https://doi.org/10.1038/ismej.2012.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487(7405):104–108. https://doi.org/10.1038/nature11225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prokopidis K, Cervo MM, Gandham A, Scott D (2020) Impact of Protein Intake in Older Adults with Sarcopenia and Obesity: A Gut Microbiota Perspective. Nutrients 12 (8). https://doi.org/10.3390/nu12082285

  17. Fan P, Liu P, Song P, Chen X, Ma X (2017) Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci Rep 7:43412. https://doi.org/10.1038/srep43412

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lubbs DC, Vester BM, Fastinger ND, Swanson KS (2009) Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. J Anim Physiol Anim Nutr (Berl) 93(1):113–121. https://doi.org/10.1111/j.1439-0396.2007.00788.x

    Article  CAS  PubMed  Google Scholar 

  19. Shi Q, Zhu Y, Wang J, Yang H, Wang J, Zhu W (2019) Protein restriction and succedent realimentation affecting ileal morphology, ileal microbial composition and metabolites in weaned piglets. Animal 13(11):2463–2472. https://doi.org/10.1017/s1751731119000776

    Article  CAS  PubMed  Google Scholar 

  20. Yue LY, Qiao SY (2008) Effects of low-protein diets supplemented with crystalline amino acids on performance and intestinal development in piglets over the first 2weeks after weaning. Livest Sci 115(2–3):144–152

    Article  Google Scholar 

  21. Ren G, Yi S, Zhang H, Wang J (2017) Ingestion of soy-whey blended protein augments sports performance and ameliorates exercise-induced fatigue in a rat exercise model. Food Funct 8(2):670–679. https://doi.org/10.1039/c6fo01692h

    Article  CAS  PubMed  Google Scholar 

  22. Yan Z, Zhang K, Zhang K, Wang G, Wang L, Zhang J, Qiu Z, Guo Z, Song X, Li J (2022) Integrated 16S rDNA Gene Sequencing and Untargeted Metabolomics Analyses to Investigate the Gut Microbial Composition and Plasma Metabolic Phenotype in Calves With Dampness-Heat Diarrhea. Front Vet Sci 9:703051. https://doi.org/10.3389/fvets.2022.703051

  23. Warwick ZS, Hall WG, Pappas TN, Schiffman SS (1993) Taste and smell sensations enhance the satiating effect of both a high-carbohydrate and a high-fat meal in humans. Physiol Behav 53(3):553–563. https://doi.org/10.1016/0031-9384(93)90153-7

    Article  CAS  PubMed  Google Scholar 

  24. Liu H, Ji HF, Zhang DY, Wang SX, Wang J, Shan DC, Wang YM (2015) Effects of Lactobacillus brevis preparation on growth performance, fecal microflora and serum profile in weaned pigs. Livestock Science

  25. Song S, Hooiveld GJ, Li M, Zhao F, Zhang W, Xu X, Müller M, Li C, Zhou G (2016) Distinct physiological, plasma amino acid, and liver transcriptome responses to purified dietary beef, chicken, fish, and pork proteins in young rats. Mol Nutr Food Res 60(5):1199–1205. https://doi.org/10.1002/mnfr.201500789

    Article  CAS  PubMed  Google Scholar 

  26. Phillips MC (2014) Molecular mechanisms of cellular cholesterol efflux. J Biol Chem 289(35):24020–24029. https://doi.org/10.1074/jbc.R114.583658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruttanavut J, Yamauchi K (2010) Growth performance and histological alterations of intestinal villi in broilers fed dietary mixed minerals. Asian Journal of Animal Sciences 4(3):96–106

    Article  CAS  Google Scholar 

  28. Johansson ME, Ambort D, Pelaseyed T, Schütte A, Gustafsson JK, Ermund A, Subramani DB, Holmén-Larsson JM, Thomsson KA, Bergström JH, van der Post S, Rodriguez-Piñeiro AM, Sjövall H, Bäckström M, Hansson GC (2011) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68(22):3635–3641. https://doi.org/10.1007/s00018-011-0822-3

    Article  CAS  PubMed  Google Scholar 

  29. Usuda H, Okamoto T, Wada K (2021) Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int J Mol Sci 22 (14). https://doi.org/10.3390/ijms22147613

  30. Zhu Y, Lin X, Zhao F, Shi X, Li H, Li Y, Zhu W, Xu X, Li C, Zhou G (2015) Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci Rep 5:15220. https://doi.org/10.1038/srep15220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature (7122)

  32. Zhang Y, Tang K, Deng Y, Chen R, Liang S, Xie H, He Y, Chen Y, Yang Q (2018) Effects of shenling baizhu powder herbal formula on intestinal microbiota in high-fat diet-induced NAFLD rats. Biomed Pharmacother 102:1025–1036. https://doi.org/10.1016/j.biopha.2018.03.158

    Article  PubMed  Google Scholar 

  33. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223. https://doi.org/10.1016/j.chom.2008.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chikayama E, Sekiyama Y, Okamoto M, Nakanishi Y, Tsuboi Y, Akiyama K, Saito K, Shinozaki K, Kikuchi J (2010) Statistical indices for simultaneous large-scale metabolite detections for a single NMR spectrum. Anal Chem 82(5):1653–1658. https://doi.org/10.1021/ac9022023

    Article  CAS  PubMed  Google Scholar 

  35. Yue S, Zhao D, Peng C, Tan C, Wang Q, Gong J (2019) Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet. Food Funct 10(11):7063–7080. https://doi.org/10.1039/c9fo01334b

    Article  CAS  PubMed  Google Scholar 

  36. Nakatani A, Li X, Miyamoto J, Igarashi M, Watanabe H, Sutou A, Watanabe K, Motoyama T, Tachibana N, Kohno M, Inoue H, Kimura I (2018) Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochem Biophys Res Commun 501(4):955–961. https://doi.org/10.1016/j.bbrc.2018.05.090

    Article  CAS  PubMed  Google Scholar 

  37. Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L (2013) Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 4:2163. https://doi.org/10.1038/ncomms3163

    Article  CAS  PubMed  Google Scholar 

  38. Arora T, Anastasovska J, Gibson G, Tuohy K, Sharma RK, Bell J, Frost G (2012) Effect of Lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice. Br J Nutr 108(8):1382–1389. https://doi.org/10.1017/s0007114511006957

    Article  CAS  PubMed  Google Scholar 

  39. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106(10):3698–3703. https://doi.org/10.1073/pnas.0812874106

    Article  PubMed  PubMed Central  Google Scholar 

  40. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1 (6):6ra14. https://doi.org/10.1126/scitranslmed.3000322

  41. Smith EA, Macfarlane GT (1997) Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb Ecol 33(3):180–188. https://doi.org/10.1007/s002489900020

    Article  CAS  PubMed  Google Scholar 

  42. Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, Zhou Z, Bao Y, Jia W, Nicholson JK, Jia W (2011) The footprints of gut microbial-mammalian co-metabolism. J Proteome Res 10(12):5512–5522. https://doi.org/10.1021/pr2007945

    Article  CAS  PubMed  Google Scholar 

  43. Bansal T, Alaniz RC, Wood TK, Jayaraman A (2010) The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A 107(1):228–233. https://doi.org/10.1073/pnas.0906112107

    Article  PubMed  Google Scholar 

  44. Lv WJ, Ma YM, Huang JY, He SQ, Li SP, Lin J, Chen R, Lun JC, Liu J, Guo SN (2022) Polysaccharides derived from Shenling Baizhu San improve colitis via modulating tryptophan metabolism in mice. Int J Biol Macromol 222(Pt A):1127–1136. https://doi.org/10.1016/j.ijbiomac.2022.09.246

    Article  CAS  PubMed  Google Scholar 

  45. Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, Guo C, Higginbottom S, Almo SC, Fischbach MA (2020) A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582(7813):566–570. https://doi.org/10.1038/s41586-020-2396-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang G, Zhang J, Shang D, Qi B, Chen H (2015) Deoxycholic acid inhibited proliferation and induced apoptosis and necrosis by regulating the activity of transcription factors in rat pancreatic acinar cell line AR42J. In Vitro Cell Dev Biol Anim 51(8):851–856. https://doi.org/10.1007/s11626-015-9907-x

    Article  CAS  PubMed  Google Scholar 

  47. Smith EA, Macfarlane GT (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81(3):288–302. https://doi.org/10.1111/j.1365-2672.1996.tb04331.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Plan of the Ministry of Science and Technology (2018YFE0206300), Heilongjiang Province Post-doctoral Funded Project (LBH-Z20205), Heilongjiang Provincial Natural Science Foundation of China (LH2020C087), Heilongjiang Bayi Agricultural University Talent Support Program Project (ZRCPY202004), Heilongjiang Bayi Agricultural University Introduced Talent Research Project (XYB201917).

Author information

Authors and Affiliations

Authors

Contributions

DZ and KZ designed the work; WM and DL performed the work; XS and DL analyzed the data; KZ wrote the first draft; LW and DZ approvaled of the version to be published.

Corresponding author

Correspondence to Dongjie Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Consent for publication

All authors approved the version to be published.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3425 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, K., Meng, W., Shu, X. et al. Fecal metabonomics combined with 16S rDNA sequencing to analyze the changes of gut microbiota in rats fed with different protein source diets. Eur J Nutr 62, 2687–2703 (2023). https://doi.org/10.1007/s00394-023-03168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03168-y

Keywords

Navigation