Skip to main content

Breastfeeding may benefit cardiometabolic health of children exposed to increased gestational glycemia in utero

Abstract

Purpose

There is altered breastmilk composition among mothers with gestational diabetes and conflicting evidence on whether breastfeeding is beneficial or detrimental to their offspring’s cardiometabolic health. We aimed to investigate associations between breastfeeding and offspring’s cardiometabolic health across the range of gestational glycemia.

Methods

We included 827 naturally conceived, term singletons from a prospective mother–child cohort. We measured gestational (26–28 weeks) fasting plasma glucose (FPG) and 2-h plasma glucose (2 hPG) after an oral glucose tolerance test as continuous variables. Participants were classified into 2 breastfeeding categories (high/intermediate vs. low) according to their breastfeeding duration and exclusivity. Main outcome measures included magnetic resonance imaging (MRI)-measured abdominal fat, intramyocellular lipids (IMCL), and liver fat, quantitative magnetic resonance (QMR)-measured body fat mass, blood pressure, blood lipids, and insulin resistance at 6 years old (all continuous variables). We evaluated if gestational glycemia (FPG and 2 hPG) modified the association of breastfeeding with offspring outcomes after adjusting for confounders using a multiple linear regression model that included a ‘gestational glycemia × breastfeeding’ interaction term.

Results

With increasing gestational FPG, high/intermediate (vs. low) breastfeeding was associated with lower levels of IMCL (p-interaction = 0.047), liver fat (p-interaction = 0.033), and triglycerides (p-interaction = 0.007), after adjusting for confounders. Specifically, at 2 standard deviations above the mean gestational FPG level, high/intermediate (vs. low) breastfeeding was linked to lower adjusted mean IMCL [0.39% of water signal (0.29, 0.50) vs. 0.54% of water signal (0.46, 0.62)], liver fat [0.39% by weight (0.20, 0.58) vs. 0.72% by weight (0.59, 0.85)], and triglycerides [0.62 mmol/L (0.51, 0.72) vs. 0.86 mmol/L (0.75, 0.97)]. 2 hPG did not significantly modify the association between breastfeeding and childhood cardiometabolic risk.

Conclusion

Our findings suggest breastfeeding may confer protection against adverse fat partitioning and higher triglyceride concentration among children exposed to increased glycemia in utero.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Restrictions apply to the availability of some or all data generated or analyzed during this study to preserve patient confidentiality or because they were used under license. The corresponding author will on request detail the restrictions and any conditions under which access to some data may be provided.

Code availability

Not applicable.

References

  1. Horta BL, Loret de Mola C, Victora CG (2015) Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Paediatr 104:30–37. https://doi.org/10.1111/apa.13133

    CAS  Article  PubMed  Google Scholar 

  2. Ma J, Qiao Y, Zhao P et al (2020) Breastfeeding and childhood obesity: a 12-country study. Matern Child Nutr 16:e12984. https://doi.org/10.1111/mcn.12984

    Article  PubMed  PubMed Central  Google Scholar 

  3. Plagemann A, Harder T, Franke K, Kohlhoff R (2002) Long-term impact of neonatal breast-feeding on body weight and glucose tolerance in children of diabetic mothers. Diabetes Care 25:16–22. https://doi.org/10.2337/diacare.25.1.16

    Article  PubMed  Google Scholar 

  4. Dugas C, Perron J, Kearney M et al (2017) Postnatal prevention of childhood obesity in offspring prenatally exposed to gestational diabetes mellitus: where are we now? Obes Facts 10:396–406. https://doi.org/10.1159/000477407

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vandyousefi S, Davis JN, Gunderson EP (2021) Association of infant diet with subsequent obesity at 2–5 years among children exposed to gestational diabetes: the SWIFT study. Diabetologia 64:1121–1132. https://doi.org/10.1007/s00125-020-05379-y

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shearrer GE, Whaley SE, Miller SJ et al (2015) Association of gestational diabetes and breastfeeding on obesity prevalence in predominately Hispanic low-income youth. Pediatr Obes 10:165–171. https://doi.org/10.1111/ijpo.247

    CAS  Article  PubMed  Google Scholar 

  7. Aris IM, Soh SE, Tint MT et al (2017) Associations of infant milk feed type on early postnatal growth of offspring exposed and unexposed to gestational diabetes in utero. Eur J Nutr 56:55–64. https://doi.org/10.1007/s00394-015-1057-0

    CAS  Article  PubMed  Google Scholar 

  8. Hui LL, Li AM, Nelson EAS et al (2018) In utero exposure to gestational diabetes and adiposity: does breastfeeding make a difference? Int J Obes (Lond) 42:1317–1325. https://doi.org/10.1038/s41366-018-0077-2

    CAS  Article  Google Scholar 

  9. Saucedo R, Zarate A, Basurto L et al (2011) Relationship between circulating adipokines and insulin resistance during pregnancy and postpartum in women with gestational diabetes. Arch Med Res 42:318–323. https://doi.org/10.1016/j.arcmed.2011.06.009

    CAS  Article  PubMed  Google Scholar 

  10. Wang T, Zheng W, Huang W et al (2019) Risk factors for abnormal postpartum glucose outcome in women with gestational diabetes mellitus diagnosed by modified The International Association of the Diabetes and Pregnancy Study Groups criteria. J Obstet Gynaecol Res 45:1545–1552. https://doi.org/10.1111/jog.14009

    CAS  Article  PubMed  Google Scholar 

  11. Rehder PM, Borovac-Pinheiro A, de Araujo ROMB et al (2021) Gestational diabetes mellitus and obesity are related to persistent hyperglycemia in the postpartum period. Rev Bras Ginecol Obstet 43:107–112. https://doi.org/10.1055/s-0040-1721356

    Article  PubMed  Google Scholar 

  12. McClean S, Farrar D, Kelly CA et al (2010) The importance of postpartum glucose tolerance testing after pregnancies complicated by gestational diabetes. Diabet Med 27:650–654. https://doi.org/10.1111/j.1464-5491.2010.03001.x

    CAS  Article  PubMed  Google Scholar 

  13. Jovanovic-Peterson L, Fuhrmann K, Hedden K et al (1989) Maternal milk and plasma glucose and insulin levels: studies in normal and diabetic subjects. J Am Coll Nutr 8:125–131. https://doi.org/10.1080/07315724.1989.10720287

    CAS  Article  PubMed  Google Scholar 

  14. Whitmore TJ, Trengove NJ, Graham DF, Hartmann PE (2012) Analysis of insulin in human breast milk in mothers with type 1 and type 2 diabetes mellitus. Int J Endocrinol 2012:296368. https://doi.org/10.1155/2012/296368

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Butte NF, Garza C, Burr R et al (1987) Milk composition of insulin-dependent diabetic women. J Pediatr Gastroenterol Nutr 6:936–941

    CAS  Article  Google Scholar 

  16. Yu X, Rong SS, Sun X et al (2018) Associations of breast milk adiponectin, leptin, insulin and ghrelin with maternal characteristics and early infant growth: a longitudinal study. Br J Nutr 120:1380–1387. https://doi.org/10.1017/S0007114518002933

    CAS  Article  PubMed  Google Scholar 

  17. Ley SH, Hanley AJ, Sermer M et al (2012) Associations of prenatal metabolic abnormalities with insulin and adiponectin concentrations in human milk. Am J Clin Nutr 95:867–874. https://doi.org/10.3945/ajcn.111.028431

    CAS  Article  PubMed  Google Scholar 

  18. Fields DA, Demerath EW (2012) Relationship of insulin, glucose, leptin, IL-6 and TNF-α in human breast milk with infant growth and body composition. Pediatr Obes 7:304–312. https://doi.org/10.1111/j.2047-6310.2012.00059.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Aydin S (2010) The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides 31:2236–2240. https://doi.org/10.1016/j.peptides.2010.08.021

    CAS  Article  PubMed  Google Scholar 

  20. Badillo-Suárez PA, Rodríguez-Cruz M, Nieves-Morales X (2017) Impact of metabolic hormones secreted in human breast milk on nutritional programming in childhood obesity. J Mammary Gland Biol Neoplasia 22:171–191. https://doi.org/10.1007/s10911-017-9382-y

    Article  PubMed  Google Scholar 

  21. Peila C, Gazzolo D, Bertino E et al (2020) Influence of diabetes during pregnancy on human milk composition. Nutrients. https://doi.org/10.3390/nu12010185

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wen L, Wu Y, Yang Y et al (2019) Gestational diabetes mellitus changes the metabolomes of human colostrum, transition milk and mature milk. Med Sci Monit 25:6128–6152. https://doi.org/10.12659/MSM.915827

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Schaefer-Graf UM, Hartmann R, Pawliczak J et al (2006) Association of breast-feeding and early childhood overweight in children from mothers with gestational diabetes mellitus. Diabetes Care 29:1105–1107. https://doi.org/10.2337/dc05-2413

    Article  PubMed  Google Scholar 

  24. Mayer-Davis EJ, Rifas-Shiman SL, Zhou L et al (2006) Breast-feeding and risk for childhood obesity: does maternal diabetes or obesity status matter? Diabetes Care 29:2231–2237. https://doi.org/10.2337/dc06-0974

    Article  PubMed  Google Scholar 

  25. Vandyousefi S, Whaley SE, Widen EM et al (2019) Association of breastfeeding and early exposure to sugar-sweetened beverages with obesity prevalence in offspring born to mothers with and without gestational diabetes mellitus. Pediatr Obes 14:e12569. https://doi.org/10.1111/ijpo.12569

    Article  PubMed  Google Scholar 

  26. Tarrant M, Chooniedass R, Fan HSL et al (2020) Breastfeeding and postpartum glucose regulation among women with prior gestational diabetes: a systematic review. J Hum Lact 36:723–738. https://doi.org/10.1177/0890334420950259

    Article  PubMed  Google Scholar 

  27. Shub A, Miranda M, Georgiou HM et al (2019) The effect of breastfeeding on postpartum glucose tolerance and lipid profiles in women with gestational diabetes mellitus. Int Breastfeed J 14:46. https://doi.org/10.1186/s13006-019-0238-5

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meyer C, Pimenta W, Woerle HJ et al (2006) different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 29:1909–1914. https://doi.org/10.2337/dc06-0438

    CAS  Article  PubMed  Google Scholar 

  29. Tint M-T, Sadananthan SA, Soh S-E et al (2020) Maternal glycemia during pregnancy and offspring abdominal adiposity measured by MRI in the neonatal period and preschool years: the growing up in Singapore towards healthy outcomes (GUSTO) prospective mother-offspring birth cohort study. Am J Clin Nutr. https://doi.org/10.1093/ajcn/nqaa055

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yuan WL, Lin J, Kramer MS et al (2020) Maternal glycaemia during pregnancy and child carotid intima media thickness, pulse wave velocity and augmentation index. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa211

    Article  PubMed  Google Scholar 

  31. Brown FM, Isganaitis E, James-Todd T (2019) Much to HAPO FUS about: increasing maternal glycemia in pregnancy is associated with worsening childhood glucose metabolism. Diabetes Care 42:393–395. https://doi.org/10.2337/dci18-0064

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee KW, Ching SM, Ramachandran V et al (2018) Prevalence and risk factors of gestational diabetes mellitus in Asia: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18:494. https://doi.org/10.1186/s12884-018-2131-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cai S, Pang WW, Low YL et al (2015) Infant feeding effects on early neurocognitive development in Asian children. Am J Clin Nutr 101:326–336. https://doi.org/10.3945/ajcn.114.095414

    CAS  Article  PubMed  Google Scholar 

  34. WHO Multicentre Growth Reference Study Group (2006) WHO child growth standards: length/height for age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age, methods and development. World Health Organization, Geneva

    Google Scholar 

  35. Chen L-W, Tint M-T, Fortier MV et al (2018) Body composition measurement in young children using quantitative magnetic resonance: a comparison with air displacement plethysmography. Pediatr Obes 13:365–373. https://doi.org/10.1111/ijpo.12250

    Article  PubMed  Google Scholar 

  36. Semelka RC, Kelekis NL, Thomasson D et al (1996) HASTE MR imaging: description of technique and preliminary results in the abdomen. J Magn Reson Imaging 6:698–699

    CAS  Article  Google Scholar 

  37. Sadananthan SA, Prakash B, Leow MK-S et al (2015) Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. J Magn Reson Imaging 41:924–934. https://doi.org/10.1002/jmri.24655

    Article  PubMed  Google Scholar 

  38. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    CAS  Article  Google Scholar 

  39. Kautzky-Willer A, Krssak M, Winzer C et al (2003) Increased intramyocellular lipid concentration identifies impaired glucose metabolism in women with previous gestational diabetes. Diabetes 52:244–251

    CAS  Article  Google Scholar 

  40. Chabanova E, Bille DS, Thisted E et al (2012) MR spectroscopy of liver in overweight children and adolescents: investigation of 1H T2 relaxation times at 3T. Eur J Radiol 81:811–814. https://doi.org/10.1016/j.ejrad.2011.02.017

    Article  PubMed  Google Scholar 

  41. Szczepaniak LS, Nurenberg P, Leonard D et al (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:E462-468. https://doi.org/10.1152/ajpendo.00064.2004

    CAS  Article  PubMed  Google Scholar 

  42. Longo R, Pollesello P, Ricci C et al (1995) Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 5:281–285

    CAS  Article  Google Scholar 

  43. Hamilton G, Yokoo T, Bydder M et al (2011) In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed 24:784–790. https://doi.org/10.1002/nbm.1622

    Article  PubMed  Google Scholar 

  44. Aris IM, Bernard JY, Chen L-W et al (2017) Postnatal height and adiposity gain, childhood blood pressure and prehypertension risk in an Asian birth cohort. Int J Obes 41:1011–1017. https://doi.org/10.1038/ijo.2017.40

    CAS  Article  Google Scholar 

  45. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  Article  Google Scholar 

  46. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419. https://doi.org/10.1007/BF00280883

    CAS  Article  PubMed  Google Scholar 

  47. Ng S, Aris IM, Tint MT et al (2019) High maternal circulating cotinine during pregnancy is associated with persistently shorter stature from birth to five years in an Asian cohort. Nicotine Tob Res 21:1103–1112. https://doi.org/10.1093/ntr/nty148

    CAS  Article  PubMed  Google Scholar 

  48. Mikolajczyk RT, Zhang J, Betran AP et al (2011) A global reference for fetal-weight and birthweight percentiles. Lancet 377:1855–1861. https://doi.org/10.1016/S0140-6736(11)60364-4

    Article  PubMed  Google Scholar 

  49. Wang HH, Lee DK, Liu M et al (2020) Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatr Gastroenterol Hepatol Nutr 23:189–230. https://doi.org/10.5223/pghn.2020.23.3.189

    Article  PubMed  PubMed Central  Google Scholar 

  50. Larson-Meyer DE, Newcomer BR, Ravussin E et al (2011) Intrahepatic and intramyocellular lipids are determinants of insulin resistance in prepubertal children. Diabetologia 54:869–875. https://doi.org/10.1007/s00125-010-2022-3

    CAS  Article  PubMed  Google Scholar 

  51. van Beusekom CM, Zeegers TA, Martini IA et al (1993) Milk of patients with tightly controlled insulin-dependent diabetes mellitus has normal macronutrient and fatty acid composition. Am J Clin Nutr 57:938–943. https://doi.org/10.1093/ajcn/57.6.938

    Article  PubMed  Google Scholar 

  52. Fields DA, George B, Williams M et al (2017) Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatr Obes 12(Suppl 1):78–85. https://doi.org/10.1111/ijpo.12182

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dalsgaard BT, Rodrigo-Domingo M, Kronborg H, Haslund H (2019) Breastfeeding and skin-to-skin contact as non-pharmacological prevention of neonatal hypoglycemia in infants born to women with gestational diabetes; a Danish quasi-experimental study. Sexual Reprod Healthcare 19:1–8. https://doi.org/10.1016/j.srhc.2018.10.003

    Article  Google Scholar 

  54. Brunner S, Schmid D, Zang K et al (2015) Breast milk leptin and adiponectin in relation to infant body composition up to 2 years. Pediatr Obes 10:67–73. https://doi.org/10.1111/j.2047-6310.2014.222.x

    CAS  Article  PubMed  Google Scholar 

  55. Weyermann M, Brenner H, Rothenbacher D (2007) Adipokines in human milk and risk of overweight in early childhood: a prospective cohort study. Epidemiology 18:722–729

    Article  Google Scholar 

  56. Woo JG, Guerrero ML, Guo F et al (2012) Human milk adiponectin affects infant weight trajectory during the second year of life. J Pediatr Gastroenterol Nutr 54:532–539. https://doi.org/10.1097/MPG.0b013e31823fde04

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Vandyousefi S, Goran MI, Gunderson EP et al (2019) Association of breastfeeding and gestational diabetes mellitus with the prevalence of prediabetes and the metabolic syndrome in offspring of Hispanic mothers. Pediatr Obes 14:e12515. https://doi.org/10.1111/ijpo.12515

    Article  PubMed  PubMed Central  Google Scholar 

  58. Crume TL, Ogden L, Maligie M et al (2011) Long-term impact of neonatal breastfeeding on childhood adiposity and fat distribution among children exposed to diabetes in utero. Diabetes Care 34:641–645. https://doi.org/10.2337/dc10-1716

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sauder KA, Bekelman TA, Harrall KK et al (2019) Gestational diabetes exposure and adiposity outcomes in childhood and adolescence: an analysis of effect modification by breastfeeding, diet quality, and physical activity in the EPOCH study. Pediatr Obes 14:e12562. https://doi.org/10.1111/ijpo.12562

    Article  PubMed  PubMed Central  Google Scholar 

  60. Aris IM, Soh SE, Tint MT et al (2014) Effect of maternal glycemia on neonatal adiposity in a multiethnic Asian birth cohort. J Clin Endocrinol Metab 99:240–247. https://doi.org/10.1210/jc.2013-2738

    CAS  Article  PubMed  Google Scholar 

  61. Schaefer-Graf UM, Buchanan TA, Xiang AH et al (2002) Clinical predictors for a high risk for the development of diabetes mellitus in the early puerperium in women with recent gestational diabetes mellitus. Am J Obstet Gynecol 186:751–756. https://doi.org/10.1067/mob.2002.121895

    Article  PubMed  Google Scholar 

  62. Sniderman AD, Bhopal R, Prabhakaran D et al (2007) Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis. Int J Epidemiol 36:220–225. https://doi.org/10.1093/ije/dyl245

    Article  PubMed  Google Scholar 

  63. Aris IM, Soh SE, Tint MT et al (2015) Associations of gestational glycemia and prepregnancy adiposity with offspring growth and adiposity in an Asian population. Am J Clin Nutr 102:1104–1112. https://doi.org/10.3945/ajcn.115.117614

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all GUSTO participants as well as the GUSTO study group, which includes Allan Sheppard, Amutha Chinnadurai, Anne Eng Neo Goh, Anne Rifkin-Graboi, Anqi Qiu, Arijit Biswas, Bee Wah Lee, Birit F.P. Broekman, Boon Long Quah, Borys Shuter, Chai Kiat Chng, Cheryl Ngo, Choon Looi Bong, Christiani Jeyakumar Henry, Claudia Chi, Cornelia Yin Ing Chee, Yam Thiam Daniel Goh, Doris Fok, E Shyong Tai, Elaine Tham, Elaine Quah Phaik Ling, Evelyn Chung Ning Law, Evelyn Xiu Ling Loo, Falk Mueller-Riemenschneider, George Seow Heong Yeo, Helen Chen, Heng Hao Tan, Hugo P S van Bever, Iliana Magiati, Inez Bik Yun Wong, Ivy Yee-Man Lau, Jeevesh Kapur, Jenny L. Richmond, Jerry Kok Yen Chan, Joanna D. Holbrook, Joanne Yoong, Joao N. Ferreira., Jonathan Y. Bernard, Joshua J. Gooley, Kenneth Kwek, Krishnamoorthy Niduvaje, Kuan Jin Lee, Leher Singh, Lin Lin Su, Lourdes Mary Daniel, Mark Hanson, Mary Rauff, Mei Chien Chua, Melvin Khee-Shing Leow, Michael Meaney, Ngee Lek, Oon Hoe Teoh, P. C. Wong, Paulin Tay Straughan, Pratibha Agarwal, Queenie Ling Jun Li, Rob M. van Dam, Salome A. Rebello, Seang-Mei Saw, See Ling Loy, Seng Bin Ang, Shang Chee Chong, Sharon Ng, Shirong Cai, Shu-E Soh, Sok Bee Lim, Stella Tsotsi, Chin-Ying Stephen Hsu, Sue Anne Toh, Swee Chye Quek, Victor Samuel Rajadurai, Walter Stunkel, Wayne Cutfield, Wee Meng Han, and Yin Bun Cheung.

Funding

This work was supported by the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Flagship Programme and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC), Singapore [NMRC/TCR/004-NUS/2008, NMRC/TCR/012-NUHS/2014]. Additional funding is provided by the Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore. KMG is supported by the UK Medical Research Council (MC_UU_12011/4), the National Institute for Health Research [NIHR Senior Investigator (NF-SI-0515-10042), NIHR Southampton 1000DaysPlus Global Nutrition Research Group (17/63/154) and NIHR Southampton Biomedical Research Centre (IS-BRC-1215-20004)], the European Union (Erasmus + Programme Early Nutrition eAcademy Southeast Asia-573651-EPP-1-2016-1-DE-EPPKA2-CBHE-JP and ImpENSA 598488-EPP-1-2018-1-DE-EPPKA2-CBHE-JP) and the British Heart Foundation (RG/15/17/3174).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung Seng Lee or Navin Michael.

Ethics declarations

Conflict of interest

YSC, KMG, and SYC are part of an academic consortium that has received research funding from companies selling nutritional products. KMG and SYC have received reimbursement for speaking at conferences sponsored by companies selling nutritional products. All other authors have nothing to disclose.

Ethical approval

Written informed consent and approval from the National Healthcare Group Domain Specific Review Board and SingHealth Centralized Institutional Review Board were obtained (Ethics approval number: NHG DSRB Ref: 2009/00021). The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Consent to participate

Freely given, informed consent to participate in the study was obtained from participants (or their parent or legal guardian in the case of children under 16).

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 590 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ong, Y.Y., Pang, W.W., Huang, J.Y. et al. Breastfeeding may benefit cardiometabolic health of children exposed to increased gestational glycemia in utero. Eur J Nutr 61, 2383–2395 (2022). https://doi.org/10.1007/s00394-022-02800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02800-7

Keywords

  • Breastfeeding
  • Gestational diabetes
  • Glycemia
  • Cardiometabolic risk
  • Fat partitioning
  • Adiposity