Skip to main content
Log in

Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Obesity challenges lipid and carbohydrate metabolism. The resulting glucolipotoxicity  causes endoplasmic reticulum (ER) dysfunction, provoking the accumulation of immature proteins, which triggers the unfolded protein reaction (UPR) as an attempt to reestablish ER homeostasis. When the three branches of UPR fail to correct the unfolded/misfolded proteins, ER stress happens. Excessive dietary saturated fatty acids or fructose exhibit the same impact on the ER stress, induced by excessive ectopic fat accumulation or rising blood glucose levels, and meta-inflammation. These metabolic abnormalities can alleviate through dietary interventions. Many pathways are disrupted in adipose tissue, liver, and pancreas during ER stress, compromising browning and thermogenesis, favoring hepatic lipogenesis, and impairing glucose-stimulated insulin secretion within pancreatic beta cells. As a result, ER stress takes part in obesity, hepatic steatosis, and diabetes pathogenesis, arising as a potential target to treat or even prevent metabolic diseases. The scientific community seeks strategies to alleviate ER stress by avoiding inflammation, apoptosis, lipogenesis suppression, and insulin sensitivity augmentation through pharmacological and non-pharmacological interventions. This comprehensive review aimed to describe the contribution of excessive dietary fat or sugar to ER stress and the impact of this adverse cellular environment on adipose tissue, liver, and pancreas function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Waldman SA, Terzic A (2014) Molecular insights provide the critical path to disease mitigation. Clin Pharmacol Ther 95(1):3–7. https://doi.org/10.1038/clpt.2013.211 (clpt2013211[pii])

    Article  CAS  PubMed  Google Scholar 

  2. Yazici D, Sezer H (2017) Insulin resistance, obesity and lipotoxicity. Adv Exp Med Biol 960:277–304. https://doi.org/10.1007/978-3-319-48382-5_12

    Article  CAS  PubMed  Google Scholar 

  3. Engin A (2017) The pathogenesis of obesity-associated adipose tissue inflammation. Adv Exp Med Biol 960:221–245. https://doi.org/10.1007/978-3-319-48382-5_9

    Article  CAS  PubMed  Google Scholar 

  4. Mota M, Banini BA, Cazanave SC, Sanyal AJ (2016) Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 65(8):1049–1061. https://doi.org/10.1016/j.metabol.2016.02.014 (S0026-0495(16)00053-6[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gustafson B, Smith U (2015) Regulation of white adipogenesis and its relation to ectopic fat accumulation and cardiovascular risk. Atherosclerosis 241(1):27–35. https://doi.org/10.1016/j.atherosclerosis.2015.04.812

    Article  CAS  PubMed  Google Scholar 

  6. Herst PM, Rowe MR, Carson GM, Berridge MV (2017) Functional mitochondria in health and disease. Front Endocrinol (Lausanne) 8:296. https://doi.org/10.3389/fendo.2017.00296

    Article  Google Scholar 

  7. Ricquier D (2017) UCP1, the mitochondrial uncoupling protein of brown adipocyte: a personal contribution and a historical perspective. Biochimie 134:3–8. https://doi.org/10.1016/j.biochi.2016.10.018

    Article  CAS  PubMed  Google Scholar 

  8. Ghemrawi R, Battaglia-Hsu SF, Arnold C (2018) Endoplasmic reticulum stress in metabolic disorders. Cells 7(6):5. https://doi.org/10.3390/cells7060063 (cells7060063[pii])

    Article  CAS  Google Scholar 

  9. Lake AD, Novak P, Hardwick RN, Flores-Keown B, Zhao F, Klimecki WT, Cherrington NJ (2014) The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease. Toxicol Sci 137(1):26–35. https://doi.org/10.1093/toxsci/kft230

    Article  CAS  PubMed  Google Scholar 

  10. Yoshida H (2007) ER stress and diseases. FEBS J 274(3):630–658

    Article  CAS  Google Scholar 

  11. Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis Internat J Program Cell Death 14(8):996–1007. https://doi.org/10.1007/s10495-009-0341-y

    Article  Google Scholar 

  12. Tabas I (2010) The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 107(7):839–850. https://doi.org/10.1161/CIRCRESAHA.110.224766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6):900–917. https://doi.org/10.1016/j.cell.2010.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ozcan U, Eya-Hlnnieö QC, Tuncman G, Görgun C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(15):457–461

    Article  Google Scholar 

  15. Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, Wek RC (2011) The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell 22(22):4390–4405. https://doi.org/10.1091/mbc.E11-06-0510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Lv Y, Zhao N, Guan G, Wang J (2015) Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death Dis 6:e1822. https://doi.org/10.1038/cddis.2015.183 (cddis2015183[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, Clark R, Miao H, Hassler JR, Fornek J, Katze MG, Hussain MM, Song B, Swathirajan J, Wang J, Yau GD, Kaufman RJ (2008) UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell 15(6):829–840. https://doi.org/10.1016/j.devcel.2008.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389. https://doi.org/10.1038/sj.cdd.4401373

    Article  CAS  PubMed  Google Scholar 

  19. Galligan JJ, Smathers RL, Shearn CT, Fritz KS, Backos DS, Jiang H, Franklin CC, Orlicky DJ, Maclean KN, Petersen DR (2012) Oxidative stress and the ER stress response in a murine model for early-stage alcoholic liver disease. J Toxicol 22:207594. https://doi.org/10.1155/2012/207594

    Article  CAS  Google Scholar 

  20. Hummasti S, Hotamisligil GS (2010) Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res 107(5):579–591. https://doi.org/10.1161/circresaha.110.225698

    Article  CAS  PubMed  Google Scholar 

  21. Wu R, Zhang QH, Lu YJ, Ren K, Yi GH (2015) Involvement of the IRE1alpha-XBP1 pathway and XBP1s-dependent transcriptional reprogramming in metabolic diseases. DNA Cell Biol 34(1):6–18. https://doi.org/10.1089/dna.2014.2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3(1):99–111. https://doi.org/10.1016/s1534-5807(02)00203-4

    Article  CAS  PubMed  Google Scholar 

  23. Horimoto S, Ninagawa S, Okada T, Koba H, Sugimoto T, Kamiya Y, Kato K, Takeda S, Mori K (2013) The unfolded protein response transducer ATF6 represents a novel transmembrane-type endoplasmic reticulum-associated degradation substrate requiring both mannose trimming and SEL1L protein. J Biol Chem 288(44):31517–31527. https://doi.org/10.1074/jbc.M113.476010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balakumar M, Raji L, Prabhu D, Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M (2016) High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol Cell Biochem 423(1–2):93–104. https://doi.org/10.1007/s11010-016-2828-5

    Article  CAS  PubMed  Google Scholar 

  25. Zhao M, Zang B, Cheng M, Ma Y, Yang Y, Yang N (2013) Differential responses of hepatic endoplasmic reticulum stress and inflammation in diet-induced obese rats with high-fat diet rich in lard oil or soybean oil. PLoS ONE 8(11):e78620. https://doi.org/10.1371/journal.pone.0078620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66(2 Suppl 1):S102-109. https://doi.org/10.1212/01.wnl.0000192306.98198.ec

    Article  CAS  PubMed  Google Scholar 

  27. Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI (2013) Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS ONE 8(1):e54059. https://doi.org/10.1371/journal.pone.0054059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee S, Kim S, Hwang S, Cherrington NJ, Ryu DY (2017) Dysregulated expression of proteins associated with ER stress, autophagy and apoptosis in tissues from nonalcoholic fatty liver disease. Oncotarget 8(38):63370–63381. https://doi.org/10.18632/oncotarget.1881218812[pii]

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hsu HC, Liu CH, Tsai YC, Li SJ, Chen CY, Chu CH, Chen MF (2016) Time-dependent cellular response in the liver and heart in a dietary-induced obese mouse model: the potential role of ER stress and autophagy. Eur J Nutr 55(6):2031–2043. https://doi.org/10.1007/s00394-015-1017-8

    Article  CAS  PubMed  Google Scholar 

  30. Catta-Preta M, Martins MA, Cunha Brunini TM, Mendes-Ribeiro AC, Mandarim-de-Lacerda CA, Aguila MB (2012) Modulation of cytokines, resistin, and distribution of adipose tissue in C57BL/6 mice by different high-fat diets. Nutrition (Burbank, Los Angeles County, Calif) 28(2):212–219. https://doi.org/10.1016/j.nut.2011.05.011

    Article  CAS  Google Scholar 

  31. Veiga FMS, Graus-Nunes F, Rachid TL, Barreto AB, Mandarim-de-Lacerda CA, Souza-Mello V (2017) Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): Hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice. Biochimie 140:106–116. https://doi.org/10.1016/j.biochi.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  32. Deguil J, Pineau L, Rowland Snyder EC, Dupont S, Beney L, Gil A, Frapper G, Ferreira T (2011) Modulation of lipid-induced ER stress by fatty acid shape. Traffic (Copenhagen, Denmark) 12(3):349–362. https://doi.org/10.1111/j.1600-0854.2010.01150.x

    Article  CAS  Google Scholar 

  33. Leamy AK, Egnatchik RA, Young JD (2013) Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res 52(1):165–174. https://doi.org/10.1016/j.plipres.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  34. Sharma NK, Das SK, Mondal AK, Hackney OG, Chu WS, Kern PA, Rasouli N, Spencer HJ, Yao-Borengasser A, Elbein SC (2008) Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab 93(11):4532–4541. https://doi.org/10.1210/jc.2008-1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Savard C, Tartaglione EV, Kuver R, Haigh WG, Farrell GC, Subramanian S, Chait A, Yeh MM, Quinn LS, Ioannou GN (2013) Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology (Baltimore, MD) 57(1):81–92. https://doi.org/10.1002/hep.25789

    Article  CAS  Google Scholar 

  36. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5(9):781–792. https://doi.org/10.1038/ncb1035

    Article  CAS  PubMed  Google Scholar 

  37. Jurczak MJ, Lee AH, Jornayvaz FR, Lee HY, Birkenfeld AL, Guigni BA, Kahn M, Samuel VT, Glimcher LH, Shulman GI (2012) Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J Biol Chem 287(4):2558–2567. https://doi.org/10.1074/jbc.M111.316760 (M111.316760[pii])

    Article  CAS  PubMed  Google Scholar 

  38. Zhang C, Chen X, Zhu RM, Zhang Y, Yu T, Wang H, Zhao H, Zhao M, Ji YL, Chen YH, Meng XH, Wei W, Xu DX (2012) Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicol Lett 212(3):229–240. https://doi.org/10.1016/j.toxlet.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  39. Softic S, Cohen DE, Kahn CR (2016) Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci 61(5):1282–1293. https://doi.org/10.1007/s10620-016-4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahzari A, Zeng XY, Zhou X, Li S, Xu J, Tan W, Vlahos R, Robinson S, Ye JM (2018) Repurposing matrine for the treatment of hepatosteatosis and associated disorders in glucose homeostasis in mice. Acta Pharmacol Sin 39(11):1753–1759. https://doi.org/10.1038/s41401-018-0016-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhuvaneswari S, Yogalakshmi B, Sreeja S, Anuradha CV (2014) Astaxanthin reduces hepatic endoplasmic reticulum stress and nuclear factor-kappaB-mediated inflammation in high fructose and high fat diet-fed mice. Cell Stress Chaperones 19(2):183–191. https://doi.org/10.1007/s12192-013-0443-x

    Article  CAS  PubMed  Google Scholar 

  42. Ren LP, Chan SM, Zeng XY, Laybutt DR, Iseli TJ, Sun RQ, Kraegen EW, Cooney GJ, Turner N, Ye JM (2012) Differing endoplasmic reticulum stress response to excess lipogenesis versus lipid oversupply in relation to hepatic steatosis and insulin resistance. PLoS ONE 7(2):e30816. https://doi.org/10.1371/journal.pone.0030816PONE-D-11-16279[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bagci R, Sahinturk V, Sahin E (2019) Azoramide ameliorates fructose-induced nonalcoholic fatty liver disease in mice. Tissue Cell 59:62–69. https://doi.org/10.1016/j.tice.2019.07.001 (S0040-8166(19)30194-6[pii])

    Article  CAS  PubMed  Google Scholar 

  44. Sahin E, Bagci R, Bektur Aykanat NE, Kacar S, Sahinturk V (2020) Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice. J Food Biochem. https://doi.org/10.1111/jfbc.13194

    Article  PubMed  Google Scholar 

  45. Baena M, Sanguesa G, Hutter N, Sanchez RM, Roglans N, Laguna JC (1851) Fructose supplementation impairs rat liver autophagy through mTORC activation without inducing endoplasmic reticulum stress. Biochim Biophys Acta 2:107–116. https://doi.org/10.1016/j.bbalip.2014.11.003 (S1388-1981(14)00225-X[pii])

    Article  CAS  Google Scholar 

  46. Pereira CD, Passos E, Severo M, Vito I, Wen X, Carneiro F, Gomes P, Monteiro R, Martins MJ (2016) Ingestion of a natural mineral-rich water in an animal model of metabolic syndrome: effects in insulin signalling and endoplasmic reticulum stress. Horm Mol Biol Clin Investig 26(2):135–150. https://doi.org/10.1515/hmbci-2015-0033/j/hmbci.ahead-of-print/hmbci-2015-0033/hmbci-2015-0033.xml[pii]

    Article  CAS  PubMed  Google Scholar 

  47. Coskun ZM (2020) ER stress amelioration by saxagliptin protects the liver against fructose-induced insulin resistance. Arch Med Res. https://doi.org/10.1016/j.arcmed.2020.03.007 (S0188-4409(19)30838-0[pii])

    Article  PubMed  Google Scholar 

  48. Sage AT, Walter LA, Shi Y, Khan MI, Kaneto H, Capretta A, Werstuck GH (2010) Hexosamine biosynthesis pathway flux promotes endoplasmic reticulum stress, lipid accumulation, and inflammatory gene expression in hepatic cells. Am J Physiol Endocrinol Metab 298(3):E499-511. https://doi.org/10.1152/ajpendo.00507.2009 (ajpendo.00507.2009[pii])

    Article  CAS  PubMed  Google Scholar 

  49. Vincenz L, Hartl FU (2014) Sugarcoating ER stress. Cell 156(6):1125–1127. https://doi.org/10.1016/j.cell.2014.02.035 (S0092-8674(14)00275-X[pii])

    Article  CAS  PubMed  Google Scholar 

  50. Tranchida F, Shintu L, Rakotoniaina Z, Tchiakpe L, Deyris V, Hiol A, Caldarelli S (2015) Metabolomic and lipidomic analysis of serum samples following curcuma longa extract supplementation in high-fructose and saturated fat fed rats. PLoS ONE 10(8):e0135948. https://doi.org/10.1371/journal.pone.0135948PONE-D-15-09209[pii]

    Article  PubMed  PubMed Central  Google Scholar 

  51. Flister KFT, Pinto BAS, Franca LM, Coelho CFF, Dos Santos PC, Vale CC, Kajihara D, Debbas V, Laurindo FRM, Paes AMA (2018) Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice. J Nutr Biochem 62:155–166. https://doi.org/10.1016/j.jnutbio.2018.09.007 (S0955-2863(18)30283-3[pii])

    Article  CAS  PubMed  Google Scholar 

  52. Gentile CL, Nivala AM, Gonzales JC, Pfaffenbach KT, Wang D, Wei Y, Jiang H, Orlicky DJ, Petersen DR, Pagliassotti MJ, Maclean KN (2011) Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease. Am J Physiol Regul Integr Comp Physiol 301(6):R1710-1722. https://doi.org/10.1152/ajpregu.00677.2010 (ajpregu.00677.2010[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Harris RB, Apolzan JW (2015) Hexosamine biosynthetic pathway activity in leptin resistant sucrose-drinking rats. Physiol Behav 138:208–218. https://doi.org/10.1016/j.physbeh.2014.09.016 (S0031-9384(14)00507-1[pii])

    Article  CAS  PubMed  Google Scholar 

  54. Gabriel TL, Mirzaian M, Hooibrink B, Ottenhoff R, van Roomen C, Aerts J, van Eijk M (2017) Induction of Sphk1 activity in obese adipose tissue macrophages promotes survival. PLoS ONE 12(7):e0182075. https://doi.org/10.1371/journal.pone.0182075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K (2012) Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep 2:799. https://doi.org/10.1038/srep00799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Suzuki T, Gao J, Ishigaki Y, Kondo K, Sawada S, Izumi T, Uno K, Kaneko K, Tsukita S, Takahashi K, Asao A, Ishii N, Imai J, Yamada T, Oyadomari S, Katagiri H (2017) ER stress protein CHOP mediates insulin resistance by modulating adipose tissue macrophage polarity. Cell Rep 18(8):2045–2057. https://doi.org/10.1016/j.celrep.2017.01.076

    Article  CAS  PubMed  Google Scholar 

  57. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604. https://doi.org/10.1016/j.immuni.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  58. Gordon S, Pluddemann A, Martinez Estrada F (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262(1):36–55. https://doi.org/10.1111/imr.12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. https://doi.org/10.1016/j.it.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  60. Cole BK, Kuhn NS, Green-Mitchell SM, Leone KA, Raab RM, Nadler JL, Chakrabarti SK (2012) 12/15-Lipoxygenase signaling in the endoplasmic reticulum stress response. Am J Physiol Endocrinol Metab 302(6):E654-665. https://doi.org/10.1152/ajpendo.00373.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ghosh AK, Garg SK, Mau T, O’Brien M, Liu J, Yung R (2015) Elevated endoplasmic reticulum stress response contributes to adipose tissue inflammation in aging. J Gerontol A Biol Sci Med Sci 70(11):1320–1329. https://doi.org/10.1093/gerona/glu186

    Article  CAS  PubMed  Google Scholar 

  62. Chen Y, Wu Z, Zhao S, Xiang R (2016) Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity. Sci Rep 6:27486. https://doi.org/10.1038/srep27486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu Y, Chen Y, Zhang J, Liu Y, Zhang Y, Su Z (2017) Retinoic acid receptor-related orphan receptor alpha stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress. J Biol Chem 292(34):13959–13969. https://doi.org/10.1074/jbc.M117.782391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nguyen MT, Chen A, Lu WJ, Fan W, Li PP, Oh DY, Patsouris D (2012) Regulation of chemokine and chemokine receptor expression by PPARgamma in adipocytes and macrophages. PLoS ONE 7(4):e34976. https://doi.org/10.1371/journal.pone.0034976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang H, Sun RQ, Camera D, Zeng XY, Jo E, Chan SM, Herbert TP, Molero JC, Ye JM (2016) Endoplasmic reticulum stress up-regulates Nedd4-2 to induce autophagy. FASEB J 30(7):2549–2556. https://doi.org/10.1096/fj.201500119 (fj.201500119[pii])

    Article  PubMed  Google Scholar 

  66. Ghosh AK, Mau T, O’Brien M, Garg S, Yung R (2016) Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue. Aging (Albany NY) 8(10):2525–2537. https://doi.org/10.18632/aging.101083

    Article  Google Scholar 

  67. Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F (2015) Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol 6:4. https://doi.org/10.3389/fphys.2015.00004

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wu J, Cohen P, Spiegelman BM (2013) Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 27(3):234–250. https://doi.org/10.1101/gad.211649.112 (27/3/234[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Okla M, Wang W, Kang I, Pashaj A, Carr T, Chung S (2015) Activation of Toll-like receptor 4 (TLR4) attenuates adaptive thermogenesis via endoplasmic reticulum stress. J Biol Chem 290(44):26476–26490. https://doi.org/10.1074/jbc.M115.677724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Contreras C, Gonzalez-Garcia I, Seoane-Collazo P, Martinez-Sanchez N, Linares-Pose L, Rial-Pensado E, Ferno J, Tena-Sempere M, Casals N, Dieguez C, Nogueiras R, Lopez M (2017) Reduction of hypothalamic endoplasmic reticulum stress activates browning of white fat and ameliorates obesity. Diabetes 66(1):87–99. https://doi.org/10.2337/db15-1547

    Article  CAS  PubMed  Google Scholar 

  71. Alcala M, Calderon-Dominguez M, Bustos E, Ramos P, Casals N, Serra D, Viana M, Herrero L (2017) Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Sci Rep 7(1):16082. https://doi.org/10.1038/s41598-017-16463-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bond LM, Burhans MS, Ntambi JM (2018) Uncoupling protein-1 deficiency promotes brown adipose tissue inflammation and ER stress. PLoS ONE 13(11):e0205726. https://doi.org/10.1371/journal.pone.0205726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bartelt A, Widenmaier SB, Schlein C, Johann K, Goncalves RLS, Eguchi K, Fischer AW, Parlakgul G, Snyder NA, Nguyen TB, Bruns OT, Franke D, Bawendi MG, Lynes MD, Leiria LO, Tseng YH, Inouye KE, Arruda AP, Hotamisligil GS (2018) Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nat Med 24(3):292–303. https://doi.org/10.1038/nm.4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kato H, Okabe K, Miyake M, Hattori K, Fukaya T, Tanimoto K, Beini S, Mizuguchi M, Torii S, Arakawa S, Ono M, Saito Y, Sugiyama T, Funatsu T, Sato K, Shimizu S, Oyadomari S, Ichijo H, Kadowaki H, Nishitoh H (2020) ER-resident sensor PERK is essential for mitochondrial thermogenesis in brown adipose tissue. Life Sci Alliance 3(3):9. https://doi.org/10.26508/lsa.201900576

    Article  Google Scholar 

  75. Liu Z, Gu H, Gan L, Xu Y, Feng F, Saeed M, Sun C (2017) Reducing Smad3/ATF4 was essential for Sirt1 inhibiting ER stress-induced apoptosis in mice brown adipose tissue. Oncotarget 8(6):9267–9279. https://doi.org/10.18632/oncotarget.14035

    Article  PubMed  Google Scholar 

  76. Malhi H, Kaufman RJ (2011) Endoplasmic reticulum stress in liver disease. J Hepatol 54(4):795–809. https://doi.org/10.1016/j.jhep.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  77. Pagliassotti MJ (2012) Endoplasmic reticulum stress in nonalcoholic fatty liver disease. Annu Rev Nutr 32:17–33. https://doi.org/10.1146/annurev-nutr-071811-150644

    Article  CAS  PubMed  Google Scholar 

  78. Wierzbicki AS, Oben J (2012) Nonalcoholic fatty liver disease and lipids. Curr Opin Lipidol 23(4):345–352. https://doi.org/10.1097/MOL.0b013e3283541cfc

    Article  CAS  PubMed  Google Scholar 

  79. Guo B, Li Z (2014) Endoplasmic reticulum stress in hepatic steatosis and inflammatory bowel diseases. Front Genet 5:242. https://doi.org/10.3389/fgene.2014.00242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schuppan D, Schattenberg JM (2013) Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol 28(Suppl 1):68–76. https://doi.org/10.1111/jgh.12212

    Article  CAS  PubMed  Google Scholar 

  81. Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, Ogata H, Zhong Z, Valasek MA, Seki E, Hidalgo J, Koike K, Kaufman RJ, Karin M (2014) ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26(3):331–343. https://doi.org/10.1016/j.ccr.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Flamment M, Hajduch E, Ferré P, Foufelle F (2012) New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 23(8):381–390. https://doi.org/10.1016/j.tem.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  83. Ozcan L, Cristina de Souza J, Harari AA, Backs J, Olson EN, Tabas I (2013) Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell Metab 18(6):803–815. https://doi.org/10.1016/j.cmet.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  84. Marinho R, Mekary RA, Muñoz VR, Gomes RJ, Pauli JR, de Moura LP (2015) Regulation of hepatic TRB3/Akt interaction induced by physical exercise and its effect on the hepatic glucose production in an insulin resistance state. Diabetol Metab Syndr 7:67. https://doi.org/10.1186/s13098-015-0064-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen X, Zhang F, Gong Q, Cui A, Zhuo S, Hu Z, Han Y, Gao J, Sun Y, Liu Z, Yang Z, Le Y, Gao X, Dong LQ, Gao X, Li Y (2016) Hepatic ATF6 increases fatty acid oxidation to attenuate hepatic steatosis in mice through peroxisome proliferator-activated receptor α. Diabetes 65(7):1904–1915. https://doi.org/10.2337/db15-1637

    Article  CAS  PubMed  Google Scholar 

  86. Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N (2014) De novo lipogenesis in health and disease. Metabolism 63(7):895–902. https://doi.org/10.1016/j.metabol.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  87. Kawano Y, Cohen DE (2013) Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 48(4):434–441. https://doi.org/10.1007/s00535-013-0758-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Farrell GC, van Rooyen D (2012) Liver cholesterol: is it playing possum in NASH? Am J Physiol Gastrointest Liver Physiol 303(1):G9-11. https://doi.org/10.1152/ajpgi.00008.2012

    Article  CAS  PubMed  Google Scholar 

  89. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ (2014) Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146(3):726–735. https://doi.org/10.1053/j.gastro.2013.11.049

    Article  CAS  PubMed  Google Scholar 

  90. Lee S, Min KT (2018) The interface between ER and mitochondria: molecular compositions and functions. Mol Cells 41(12):1000–1007. https://doi.org/10.14348/molcells.2018.0438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Højmann Larsen A, Frandsen A, Treiman M (2001) Upregulation of the SERCA-type Ca2+ pump activity in response to endoplasmic reticulum stress in PC12 cells. BMC Biochem 2:4. https://doi.org/10.1186/1471-2091-2-4

    Article  PubMed  PubMed Central  Google Scholar 

  92. van Vliet AR, Agostinis P (2018) Mitochondria-associated membranes and ER stress. Curr Top Microbiol Immunol 414:73–102. https://doi.org/10.1007/82_2017_2

    Article  CAS  PubMed  Google Scholar 

  93. Reyes-Fermín LM, Aparicio-Trejo OE, Avila-Rojas SH, Gómez-Sierra T, Martínez-Klimova E, Pedraza-Chaverri J (2020) Natural antioxidants’ effects on endoplasmic reticulum stress-related diseases. Food Chem Toxicol 138:111229. https://doi.org/10.1016/j.fct.2020.111229

    Article  CAS  PubMed  Google Scholar 

  94. Yoboue ED, Sitia R, Simmen T (2018) Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis 9(3):331. https://doi.org/10.1038/s41419-017-0033-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51(14):2959–2973. https://doi.org/10.1021/bi2018909

    Article  CAS  PubMed  Google Scholar 

  96. Kaufman RJ, Malhotra JD (2014) Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim Biophys Acta 1843(10):2233–2239. https://doi.org/10.1016/j.bbamcr.2014.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A, Więckowski MR (2017) Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int J Mol Sci 18(7):9–12. https://doi.org/10.3390/ijms18071576

    Article  CAS  Google Scholar 

  98. Suganya N, Bhakkiyalakshmi E, Suriyanarayanan S, Paulmurugan R, Ramkumar KM (2014) Quercetin ameliorates tunicamycin-induced endoplasmic reticulum stress in endothelial cells. Cell Prolif 47(3):231–240. https://doi.org/10.1111/cpr.12102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sarcinelli C, Dragic H, Piecyk M, Barbet V, Duret C, Barthelaix A, Ferraro-Peyret C, Fauvre J, Renno T, Chaveroux C, Manie SN (2020) ATF4-dependent NRF2 transcriptional regulation promotes antioxidant protection during endoplasmic reticulum stress. Cancers (Basel) 12(3):7–12. https://doi.org/10.3390/cancers12030569

    Article  CAS  Google Scholar 

  100. McKimpson WM, Kitsis RN (2017) A new role for the ER unfolded protein response mediator ATF6: induction of a generalized antioxidant program. Circ Res 120(5):759–761. https://doi.org/10.1161/CIRCRESAHA.117.310577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz-Pinedo C, Rehm M, Chevet E, Samali A (2019) Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. Febs J 286(2):241–278. https://doi.org/10.1111/febs.14608

    Article  CAS  PubMed  Google Scholar 

  102. Willy JA, Young SK, Stevens JL, Masuoka HC, Wek RC (2015) CHOP links endoplasmic reticulum stress to NF-κB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell 26(12):2190–2204. https://doi.org/10.1091/mbc.E15-01-0036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, Ferré P, Foufelle F (2009) GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119(5):1201–1215. https://doi.org/10.1172/jci37007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Uppala JK, Gani AR, Ramaiah KVA (2017) Chemical chaperone, TUDCA unlike PBA, mitigates protein aggregation efficiently and resists ER and non-ER stress induced HepG2 cell death. Sci Rep 7(1):3831. https://doi.org/10.1038/s41598-017-03940-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang J, Ao N, Du J, Wang X, He Y (2015) Protective effect of liraglutide against ER stress in the liver of high-fat diet-induced insulin-resistant rats. Endocrine 49(1):106–118. https://doi.org/10.1007/s12020-014-0480-y

    Article  CAS  PubMed  Google Scholar 

  106. Silva-Veiga FM, Rachid TL, de Oliveira L, Graus-Nunes F, Mandarim-de-Lacerda CA, Souza-Mello V (2018) GW0742 (PPAR-beta agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice. Mol Cell Endocrinol 474:227–237. https://doi.org/10.1016/j.mce.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  107. Kim NC, Graf TN, Sparacino CM, Wani MC, Wall ME (2003) Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum). Org Biomol Chem 1(10):1684–1689. https://doi.org/10.1039/b300099k

    Article  CAS  PubMed  Google Scholar 

  108. Xu Y, Yang C, Zhang S, Li J, Xiao Q, Huang W (2018) Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol Pharm Bull 41(11):1638–1644. https://doi.org/10.1248/bpb.b18-00132

    Article  CAS  PubMed  Google Scholar 

  109. Da Silva XG, Rutter GA (2020) Metabolic and functional heterogeneity in pancreatic beta cells. J Mol Biol 432(5):1395–1406. https://doi.org/10.1016/j.jmb.2019.08.005

    Article  CAS  Google Scholar 

  110. Menon S, Rajesh G, Balakrishnan V (2015) Pancreas and diabetes mellitus: the relationship between the organ and the disease. J Assoc Physicians India 63(10):51–58

    PubMed  Google Scholar 

  111. Mandarim-de-Lacerda CA (2019) Pancreatic islet (of Langerhans) revisited. Histol Histopathol 34(9):985–993. https://doi.org/10.14670/HH-18-118

    Article  CAS  PubMed  Google Scholar 

  112. Moin ASM, Butler AE (2019) Alterations in beta cell identity in Type 1 and Type 2 diabetes. Curr Diab Rep 19(9):83. https://doi.org/10.1007/s11892-019-1194-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yalcinkaya M, Kerksiek A, Gebert K, Annema W, Sibler R, Radosavljevic S, Lutjohann D, Rohrer L, von Eckardstein A (2020) HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic beta-cells in vitro by activation of Smoothened. J Lipid Res 61(4):492–504. https://doi.org/10.1194/jlr.RA119000509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun J, Cui J, He Q, Chen Z, Arvan P, Liu M (2015) Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol Aspects Med 42:105–118. https://doi.org/10.1016/j.mam.2015.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu M, Wright J, Guo H, Xiong Y, Arvan P (2014) Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. Vitam Horm 95:35–62. https://doi.org/10.1016/B978-0-12-800174-5.00002-8

    Article  CAS  PubMed  Google Scholar 

  116. Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P (2018) Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 20(Suppl 2):28–50. https://doi.org/10.1111/dom.13378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Back SH, Kaufman RJ (2012) Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 81:767–793. https://doi.org/10.1146/annurev-biochem-072909-095555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904. https://doi.org/10.1016/s1097-2765(00)80330-5

    Article  CAS  PubMed  Google Scholar 

  119. Herbert TP, Laybutt DR (2016) A reevaluation of the role of the unfolded protein response in islet dysfunction: maladaptation or a failure to adapt? Diabetes 65(6):1472–1480. https://doi.org/10.2337/db15-1633

    Article  CAS  PubMed  Google Scholar 

  120. Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P (2017) Endoplasmic reticulum stress and eIF2alpha phosphorylation: the achilles heel of pancreatic beta cells. Mol Metab 6(9):1024–1039. https://doi.org/10.1016/j.molmet.2017.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ghosh R, Colon-Negron K, Papa FR (2019) Endoplasmic reticulum stress, degeneration of pancreatic islet beta-cells, and therapeutic modulation of the unfolded protein response in diabetes. Mol Metab 27S:S60–S68. https://doi.org/10.1016/j.molmet.2019.06.012

    Article  CAS  PubMed  Google Scholar 

  122. Lee H, Lee YS, Harenda Q, Pietrzak S, Oktay HZ, Schreiber S, Liao Y, Sonthalia S, Ciecko AE, Chen YG, Keles S, Sridharan R, Engin F (2020) Beta cell dedifferentiation induced by IRE1alpha deletion prevents type 1 diabetes. Cell Metab 31(4):822–836. https://doi.org/10.1016/j.cmet.2020.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Morita S, Villalta SA, Feldman HC, Register AC, Rosenthal W, Hoffmann-Petersen IT, Mehdizadeh M, Ghosh R, Wang L, Colon-Negron K, Meza-Acevedo R, Backes BJ, Maly DJ, Bluestone JA, Papa FR (2017) Targeting ABL-IRE1alpha signaling spares ER-stressed pancreatic beta cells to reverse autoimmune diabetes. Cell Metab 25(4):883–897. https://doi.org/10.1016/j.cmet.2017.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu M, Haataja L, Wright J, Wickramasinghe NP, Hua QX, Phillips NF, Barbetti F, Weiss MA, Arvan P (2010) Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport. PLoS ONE 5(10):e13333. https://doi.org/10.1371/journal.pone.0013333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fu J, Nchambi KM, Wu H, Luo X, An X, Liu D (2020) Liraglutide protects pancreatic beta islet cells from endoplasmic reticulum stress by upregulating MANF to promote autophagy turnover. Life Sci. https://doi.org/10.1016/j.lfs.2020.117648

    Article  PubMed  Google Scholar 

  126. Masini M, Martino L, Marselli L, Bugliani M, Boggi U, Filipponi F, Marchetti P, De Tata V (2017) Ultrastructural alterations of pancreatic beta cells in human diabetes mellitus. Diabetes Metab Res Rev 33(6):l8. https://doi.org/10.1002/dmrr.2894

    Article  CAS  Google Scholar 

  127. Skelin M, Rupnik M, Cencic A (2010) Pancreatic beta cell lines and their applications in diabetes mellitus research. Altex 27(2):105–113. https://doi.org/10.14573/altex.2010.2.105

    Article  PubMed  Google Scholar 

  128. Huang XT, Liu W, Zhou Y, Sun M, Sun CC, Zhang CY, Tang SY (2019) Endoplasmic reticulum stress contributes to NMDA-induced pancreatic beta-cell dysfunction in a CHOP-dependent manner. Life Sci 232:116612. https://doi.org/10.1016/j.lfs.2019.116612

    Article  CAS  PubMed  Google Scholar 

  129. Vong CT, Tseng HH, Kwan YW, Lee SM, Hoi MP (2016) Antrodia camphorata increases insulin secretion and protects from apoptosis in MIN6 cells. Front Pharmacol 7:67. https://doi.org/10.3389/fphar.2016.00067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 (Master scholarships for AFS, CSM, DASO, doctoral scholarship for FMS-V, and post-doctoral scholarship for FFM), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (Faperj – Master scholarships for BOC and CRA). The corresponding author is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil) (CNPq, Grant N° 305867/2017-2), and FAPERJ (Grant N° E-26/202.657/2018). These agencies did not interfere with the accomplishment and submission of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

VS-M had the idea for the article and critically revised the work, all authors performed the literature search, data analysis, and drafted the manuscript.

Corresponding author

Correspondence to Vanessa Souza-Mello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes-da-Silva, A., Miranda, C.S., Santana-Oliveira, D.A. et al. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas. Eur J Nutr 60, 2949–2960 (2021). https://doi.org/10.1007/s00394-021-02542-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02542-y

Keywords

Navigation