Skip to main content

Advertisement

Log in

Protective effect of liraglutide against ER stress in the liver of high-fat diet-induced insulin-resistant rats

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate whether the glucagon-like peptide-1 (GLP-1) analog liraglutide can alleviate endoplasmic reticulum (ER) stress and insulin resistance (IR) in the liver of high-fat diet-induced insulin-resistant rats. Eighty-five male Sprague–Dawley rats were fed with normal chow or a high-fat diet for 12 weeks. The IR was evaluated using the hyperinsulinemic-euglycemic clamp technique. The rats in the HF group were further divided into four groups and were treated with or without liraglutide by subcutaneous injection. Body weight (BW), fasting blood glucose (FBG), fasting insulin (FINS), and insulin sensitivity were measured. The expression of ER stress marker GRP78 and its signaling mediators, such as IRE1α, PERK, and ATF6, in the liver were examined. The ultrastructure of the ER in the liver was examined by transmission electron microscopy. The expression levels of chemerin in the liver and the serum were also measured. After 4 weeks of liraglutide treatment, the BW, FBG, and FINS levels were significantly reduced, and the insulin sensitivity was increased compared with the HF only rats. Liraglutide reduced the expression of GRP78 and chemerin in liver tissue at both the mRNA and protein levels. Interestingly, the chemerin mRNA was closely correlated with the level of GRP78 mRNA, while the level of chemerin in serum was also associated with the FINS level. As a representative GLP-1 analog, liraglutide can suppress ER stress and reduce chemerin expression in the liver of rats exposed to a high-fat diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.F. Gautier, S.P. Choukem, J. Girard, Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. Diabetes Metabol. 34(Suppl 2), S65–S72 (2008). doi:10.1016/S1262-3636(08)73397-4

    Article  CAS  Google Scholar 

  2. C.F. Deacon, Therapeutic strategies based on glucagon-like peptide 1. Diabetes 53(9), 2181–2189 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. M. Parks, C. Rosebraugh, Weighing risks and benefits of liraglutide: the FDA’s review of a new antidiabetic therapy. New Engl. J. Med. 362(9), 774–777 (2010). doi:10.1056/NEJMp1001578

    Article  CAS  PubMed  Google Scholar 

  4. K.R. Peters, Liraglutide for the treatment of type 2 diabetes: a clinical update. Am. J. Ther. 20(2), 178–188 (2013). doi:10.1097/MJT.0b013e3182204c16

    Article  PubMed  Google Scholar 

  5. M. Horowitz, A. Flint, K.L. Jones, C. Hindsberger, M.F. Rasmussen, C. Kapitza, S. Doran, T. Jax, M. Zdravkovic, I.M. Chapman, Effect of the once-daily human GLP-1 analogue liraglutide on appetite, energy intake, energy expenditure and gastric emptying in type 2 diabetes. Diabetes Res. Clin. Pract. 97(2), 258–266 (2012). doi:10.1016/j.diabres.2012.02.016

    Article  CAS  PubMed  Google Scholar 

  6. Knudsen, L.B.: Liraglutide: the therapeutic promise from animal models. Int. J. Clin Pract. 64(167), 4–11 (2010). doi:10.1111/j.1742-1241.2010.02499.x

  7. T. Schwasinger-Schmidt, D.C. Robbins, S.J. Williams, L. Novikova, L. Stehno-Bittel, Long-term liraglutide treatment is associated with increased insulin content and secretion in beta-cells, and a loss of alpha-cells in ZDF rats. Pharmacol. Res. 76, 58–66 (2013). doi:10.1016/j.phrs.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  8. C.W. Spellman, Incorporating glucagon-like peptide-1 receptor agonists into clinical practice. J. Am. Osteopath. Assoc. 112(1 suppl 1), S7–S15 (2012)

  9. S. Chen, W.B. Melchior Jr, L. Guo, Endoplasmic reticulum stress in drug- and environmental toxicant-induced liver toxicity. J. Environ. Sci. Health C 32(1), 83–104 (2014). doi:10.1080/10590501.2014.881648

    Article  CAS  Google Scholar 

  10. H. Malhi, R.J. Kaufman, Endoplasmic reticulum stress in liver disease. J. Hepatol. 54(4), 795–809 (2011). doi:10.1016/j.jhep.2010.11.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Y. Ji, Z. Zhao, T. Cai, P. Yang, M. Cheng, Liraglutide alleviates diabetic cardiomyopathy by blocking CHOP-triggered apoptosis via the inhibition of the IRE-alpha pathway. Mol. Med. Rep. 9(4), 1254–1258 (2014). doi:10.3892/mmr.2014.1956

    CAS  PubMed  Google Scholar 

  12. J. Liu, Y. Liu, L. Chen, Y. Wang, J. Li, Glucagon-like peptide-1 analog liraglutide protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway. J. Diabetes Res. 2013, 630537 (2013). doi:10.1155/2013/630537

    PubMed Central  PubMed  Google Scholar 

  13. L. Zhao, H. Guo, H. Chen, R.B. Petersen, L. Zheng, A. Peng, K. Huang, Effect of Liraglutide on endoplasmic reticulum stress in diabetes. Biochem. Biophys. Res. Commun. 441(1), 133–138 (2013). doi:10.1016/j.bbrc.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  14. D.Y. Jung, U. Chalasani, N. Pan, R.H. Friedline, D.A. Prosdocimo, M. Nam, Y. Azuma, R. Maganti, K. Yu, A. Velagapudi, B. O’Sullivan-Murphy, J.L. Sartoretto, M.K. Jain, M.P. Cooper, F. Urano, J.K. Kim, S. Gray, KLF15 is a molecular link between endoplasmic reticulum stress and insulin resistance. PLoS One 8(10), e77851 (2013). doi:10.1371/journal.pone.0077851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. E. Panzhinskiy, J. Ren, S. Nair, Protein tyrosine phosphatase 1B and insulin resistance: role of endoplasmic reticulum stress/reactive oxygen species/nuclear factor kappa B axis. PLoS One 8(10), e77228 (2013). doi:10.1371/journal.pone.0077228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Y.L. Chu, Y.D. Gong, Z.H. Su, H.N. Yu, Q. Cui, H.Y. Jiang, H.M. Qu, Relationship between tyrosine phosphorylation and protein expression of insulin receptor and insulin resistance in gestational diabetes mellitus. J. Huazhong Univ. Sci. Technol. Med. Sci. 34(3), 393–397 (2014). doi:10.1007/s11596-014-1289-x

  17. Z.C. Wang, J.F. Wang, Y.B. Li, C.X. Guo, Y. Liu, F. Fang, S.L. Gong, Involvement of endoplasmic reticulum stress in apoptosis of testicular cells induced by low-dose radiation. J. Huazhong Univ. Sci. Technol. Med. Sci. 33(4), 551–558 (2013). doi:10.1007/s11596-013-1157-0

  18. M. Becker, K. Rabe, C. Lebherz, J. Zugwurst, B. Goke, K.G. Parhofer, M. Lehrke, U.C. Broedl, Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels, and atherosclerosis in LDL receptor knockout mice on high-fat diet. Diabetes 59(11), 2898–2903 (2010). doi:10.2337/db10-0362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. K. Bozaoglu, K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder, D. Segal, Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148(10), 4687–4694 (2007). doi:10.1210/en.2007-0175

    Article  CAS  PubMed  Google Scholar 

  20. K. Bozaoglu, D. Segal, K.A. Shields, N. Cummings, J.E. Curran, A.G. Comuzzie, M.C. Mahaney, D.L. Rainwater, J.L. VandeBerg, J.W. MacCluer, G. Collier, J. Blangero, K. Walder, J.B. Jowett, Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J. Clin. Endocrinol. Metabol. 94(8), 3085–3088 (2009). doi:10.1210/jc.2008-1833

    Article  CAS  Google Scholar 

  21. M.C. Ernst, I.D. Haidl, L.A. Zuniga, H.J. Dranse, J.L. Rourke, B.A. Zabel, E.C. Butcher, C.J. Sinal, Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology 153(2), 672–682 (2012). doi:10.1210/en.2011-1490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. M.C. Ernst, M. Issa, K.B. Goralski, C.J. Sinal, Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology 151(5), 1998–2007 (2010). doi:10.1210/en.2009-1098

    Article  CAS  PubMed  Google Scholar 

  23. S.S. Fatima, K. Bozaoglu, R. Rehman, F. Alam, A.S. Memon, Elevated chemerin levels in Pakistani men: an interrelation with metabolic syndrome phenotypes. PLoS One 8(2), e57113 (2013). doi:10.1371/journal.pone.0057113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. J.L. Rourke, H.J. Dranse, C.J. Sinal, Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes. Rev. 14(3), 245–262 (2013). doi:10.1111/obr.12009

    Article  CAS  PubMed  Google Scholar 

  25. M. Takahashi, Y. Takahashi, K. Takahashi, F.N. Zolotaryov, K.S. Hong, R. Kitazawa, K. Iida, Y. Okimura, H. Kaji, S. Kitazawa, M. Kasuga, K. Chihara, Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582(5), 573–578 (2008). doi:10.1016/j.febslet.2008.01.023

    Article  CAS  PubMed  Google Scholar 

  26. H. Malhi, G.J. Gores, Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin. Liver Dis. 28(4), 360–369 (2008). doi:10.1055/s-0028-1091980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. C. Owman, S.J. Lolait, S. Santen, B. Olde, Molecular cloning and tissue distribution of cDNA encoding a novel chemoattractant-like receptor. Biochem. Biophys. Res. Commun. 241(2), 390–394 (1997). doi:10.1006/bbrc.1997.7822

    Article  CAS  PubMed  Google Scholar 

  28. L. Pei, J. Yang, J. Du, H. Liu, N. Ao, Y. Zhang, Downregulation of chemerin and alleviation of endoplasmic reticulum stress by metformin in adipose tissue of rats. Diabetes Res. Clin. Pract. 97(2), 267–275 (2012). doi:10.1016/j.diabres.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  29. J. Lamontagne, E. Jalbert-Arsenault, E. Pepin, M.L. Peyot, N.B. Ruderman, C.J. Nolan, E. Joly, S.R. Madiraju, V. Poitout, M. Prentki, Pioglitazone acutely reduces energy metabolism and insulin secretion in rats. Diabetes 62(6), 2122–2129 (2013). doi:10.2337/db12-0428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Z. Luo, H. Liu, X. Sun, R. Guo, R. Cui, X. Ma, M. Yan, RNA interference against discoidin domain receptor 2 ameliorates alcoholic liver disease in rats. PLoS One 8(2), e55860 (2013). doi:10.1371/journal.pone.0055860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. G.S. Hotamisligil, Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6), 900–917 (2010). doi:10.1016/j.cell.2010.02.034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. H. Li, X. Yu, Emerging role of JNK in insulin resistance. Curr. Diabetes Rev. 9(5), 422–428 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. A. Bettaieb, M.A. Vazquez Prieto, C. Rodriguez Lanzi, R.M. Miatello, F.G. Haj, C.G. Fraga, P.I. Oteiza, (−)-Epicatechin mitigates high-fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress. Free Radic. Biol. Med. 72, 247–256 (2014). doi:10.1016/j.freeradbiomed.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  34. Y. Han, H.W. Jung, H.S. Bae, Y.K. Park, Wen-pi-tang-Hab-Wu-ling-san, a polyherbal medicine, attenuates ER stress in 3T3-L1 preadipocytes by promoting the insulin signaling pathway. Evid. Complement. Altern. Med. 2013, 825814 (2013). doi:10.1155/2013/825814

    Google Scholar 

  35. Y.Y. Wang, S.Y. Lin, Y.H. Chuang, W.H. Sheu, K.C. Tung, C.J. Chen, Activation of hepatic inflammatory pathways by catecholamines is associated with hepatic insulin resistance in male ischemic stroke rats. Endocrinology 155(4), 1235–1246 (2014). doi:10.1210/en.2013-1593

    Article  PubMed  Google Scholar 

  36. L. Xu, G.A. Spinas, M. Niessen, ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport. Hormone Metabol. Res. 42(9), 643–651 (2010). doi:10.1055/s-0030-1255034

  37. P. Hu, Z. Han, A.D. Couvillon, R.J. Kaufman, J.H. Exton, Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26(8), 3071–3084 (2006). doi:10.1128/MCB.26.8.3071-3084.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. S. Kralisch, S. Weise, G. Sommer, J. Lipfert, U. Lossner, M. Bluher, M. Stumvoll, M. Fasshauer, Interleukin-1beta induces the novel adipokine chemerin in adipocytes in vitro. Regul. Pept. 154(1–3), 102–106 (2009). doi:10.1016/j.regpep.2009.02.010

    Article  CAS  PubMed  Google Scholar 

  39. D. Wang, G.Y. Yuan, X.Z. Wang, J. Jia, L.L. Di, L. Yang, X. Chen, F.F. Qian, J.J. Chen, Plasma chemerin level in metabolic syndrome. Genet. Mol. Res. 12(4), 5986–5991 (2013). doi:10.4238/2013.November.26.8

    Article  CAS  PubMed  Google Scholar 

  40. A.A. Alfadda, R.M. Sallam, M.A. Chishti, A.S. Moustafa, S. Fatma, W.S. Alomaim, M.Y. Al-Naami, A.F. Bassas, G.P. Chrousos, H. Jo, Differential patterns of serum concentration and adipose tissue expression of chemerin in obesity: adipose depot specificity and gender dimorphism. Mol. Cells 33(6), 591–596 (2012). doi:10.1007/s10059-012-0012-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. R. Chakaroun, M. Raschpichler, N. Kloting, A. Oberbach, G. Flehmig, M. Kern, M.R. Schon, E. Shang, T. Lohmann, M. Dressler, M. Fasshauer, M. Stumvoll, M. Bluher, Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metab. Clin. Exp. 61(5), 706–714 (2012). doi:10.1016/j.metabol.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  42. P. Fietta, G. Delsante, Focus on adipokines. Theor. Biol. Forum 106(1–2), 103–129 (2013)

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the reagents and technical support provided by the Center Laboratory of The First Affiliated Hospital and the Laboratory Animal Center of China Medical University. This work was supported by grants from the Hall Education of Liaoning (L2010597) and the Science and Technology Agency of Liaoning (2011225020).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Supplementary material 2 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Ao, N., Du, J. et al. Protective effect of liraglutide against ER stress in the liver of high-fat diet-induced insulin-resistant rats. Endocrine 49, 106–118 (2015). https://doi.org/10.1007/s12020-014-0480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0480-y

Keywords

Navigation