Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107(26):11971–11975. https://doi.org/10.1073/pnas.1002601107
Article
PubMed
Google Scholar
Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108:4586–4591. https://doi.org/10.1073/pnas.1000097107
Article
PubMed
Google Scholar
Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley RE (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799. https://doi.org/10.1016/j.cell.2014.09.053
CAS
Article
PubMed
PubMed Central
Google Scholar
Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108:4554–4561. https://doi.org/10.1073/pnas.1000087107
Article
PubMed
Google Scholar
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222. https://doi.org/10.1038/nature11053
CAS
Article
PubMed
PubMed Central
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559. https://doi.org/10.1038/nature12820
CAS
Article
PubMed
PubMed Central
Google Scholar
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107(33):14691–14696. https://doi.org/10.1073/pnas.1005963107
Article
PubMed
Google Scholar
Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848. https://doi.org/10.1016/j.cell.2006.02.017
CAS
Article
PubMed
Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480-U487. https://doi.org/10.1038/nature07540
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108. https://doi.org/10.1126/science.1208344
CAS
Article
PubMed
PubMed Central
Google Scholar
Masood MI, Qadir MI, Shirazi JH, Khan IU (2011) Beneficial effects of lactic acid bacteria on human beings. Crit Rev Microbiol 37(1):91–98. https://doi.org/10.3109/1040841x.2010.536522
Article
PubMed
Google Scholar
Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72. https://doi.org/10.1079/pns2002207
CAS
Article
PubMed
Google Scholar
Nicholson JK, Wilson ID (2003) Understanding “global” systems biology: Metabonomics and the continuum of metabolism. Nat Rev Drug Discovery 2(8):668–676. https://doi.org/10.1038/nrd1157
CAS
Article
PubMed
Google Scholar
Duncan SH, Louis P, Thomson JM, Flint HJ (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11(8):2112–2122. https://doi.org/10.1111/j.1462-2920.2009.01931.x
Article
PubMed
Google Scholar
Podsedek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. Lwt Food Sci Technol 40(1):1–11. https://doi.org/10.1016/j.lwt.2005.07.023
CAS
Article
Google Scholar
Cheng DL, Hashimoto K, Uda Y (2004) In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food Chem Toxicol 42(3):351–357. https://doi.org/10.1016/j.fct.2003.09.008
CAS
Article
PubMed
Google Scholar
Elfoul L, Rabot S, Khelifa N, Quinsac A, Duguay A, Rimbault A (2001) Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiol Lett 197(1):99–103. https://doi.org/10.1111/j.1574-6968.2001.tb10589.x
CAS
Article
PubMed
Google Scholar
Palop ML, Smiths JP, Tenbrink B (1995) Degradation of sinigrin by lactobacillus-agilis strain R16. Int J Food Microbiol 26(2):219–229. https://doi.org/10.1016/0168-1605(95)00123-2
CAS
Article
Google Scholar
Oginsky EL, Stein AE, Greer MA (1965) Myrosinase activity in bacteria as demonstrated by conversion of progoitrin to goitrin. Proc Soc Exp Biol Med 119(2):360–370
CAS
Article
Google Scholar
Bheemreddy RM, Jeffery EH (2007) The metabolic fate of purified glucoraphanin in F344 rats. J Agric Food Chem 55(8):2861–2866. https://doi.org/10.1021/jf0633544
CAS
Article
PubMed
Google Scholar
Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (1998) Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomark Prev 7(12):1091–1100
CAS
Google Scholar
Li F, Hullar MAJ, Beresford SAA, Lampe JW (2011) Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. Br J Nutr 106(3):408–416. https://doi.org/10.1017/s0007114511000274
CAS
Article
PubMed
PubMed Central
Google Scholar
Luang-In V, Narbad A, Nueno-Palop C, Mithen R, Bennett M, Rossiter JT (2014) The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Mol Nutr Food Res 58(4):875–883. https://doi.org/10.1002/mnfr.201300377
CAS
Article
PubMed
Google Scholar
Narbad A, Rossiter JT (2018) Gut glucosinolate metabolism and isothiocyanate production. Mol Nutr Food Res 62(18):1700991
Article
Google Scholar
Saha S, Hollands W, Teucher B, Needs PW, Narbad A, Ortori CA, Barrett DA, Rossiter JT, Mithen RF, Kroon PA (2012) Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Mol Nutr Food Res 56(12):1906–1916
CAS
Article
Google Scholar
Edmands WMB, Gooderham NJ, Holmes E, Mitchell SC (2013) S-Methyl-L-cysteine sulphoxide: the Cinderella phytochemical? Toxicol Res 2(1):11–22. https://doi.org/10.1039/c2tx20030a
CAS
Article
Google Scholar
Hamamoto A, Mazelis M (1986) THE C-S lyases of higher-plants - isolation and properties of homogeneous Cystine lyase from broccoli (Brassica-oleracea var botrytis) buds. Plant Physiol 80(3):702–706. https://doi.org/10.1104/pp.80.3.702
CAS
Article
PubMed
PubMed Central
Google Scholar
Larsen GL (1985) Distribution of cysteine conjugate beta-lyase in gastrointestinal bacteria and in the environment. Xenobiotica 15(3):199–209
CAS
Article
Google Scholar
Nomura J, Nishizuka Y, Hayaishi O (1963) S-alkylcysteinase—enzymatic cleavage of S-methyl-L-cysteine and its sulfoxide. J Biol Chem 238(4):1441–2000
CAS
Article
Google Scholar
Kim S-Y, Park K-W, Kim J-Y, Jeong I-Y, Byun M-W, Park J-E, Yee S-T, Kim K-H, Rhim JS, Yamada K, Seo K-I (2008) Thiosulfinates from Allium tuberosum L. induce apoptosis via caspase-dependent and -independent pathways in PC-3 human prostate cancer cells. Bioorg Med Chem Lett 18(1):199–204. https://doi.org/10.1016/j.bmcl.2007.10.099
CAS
Article
PubMed
Google Scholar
Marks HS, Anderson JA, Stoewsand GS (1993) Effect of S-methyl cysteine sulfoxide and its metabolite methyl methane thiosulfinate, both occurring naturally in brassica vegetables, on mouse genotoxicity. Food Chem Toxicol 31(7):491–495. https://doi.org/10.1016/0278-6915(93)90108-b
CAS
Article
PubMed
Google Scholar
Reddy BS, Kawamori T, Lubet R, Steele V, Kelloff G, Rao CV (1999) Chemopreventive effect of S-methylmethane thiosulfonate and sulindac administered together during the promotion/progression stages of colon carcinogenesis. Carcinogenesis 20(8):1645–1648. https://doi.org/10.1093/carcin/20.8.1645
CAS
Article
PubMed
Google Scholar
Kumari K, Augusti KT (2002) Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian J Exp Biol 40(9):1005–1009
CAS
PubMed
Google Scholar
Kumari K, Augusti KT (2007) Lipid lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn in high cholesterol diet fed rats. J Ethnopharmacol 109(3):367–371. https://doi.org/10.1016/j.jep.2006.07.045
CAS
Article
PubMed
Google Scholar
Fujiwara M, Uchino H, Inoue K, Itokawa Y (1972) Anti-hypercholesterolemic effect of a sulfur-containing amino-acid, S-methyl-l-cysteine sulfoxide, isolated from cabbage. Experientia 28(3):254. https://doi.org/10.1007/bf01928671
CAS
Article
PubMed
Google Scholar
Kellingray L, Tapp HS, Saha S, Doleman JF, Narbad A, Mithen RF (2017) Consumption of a diet rich in Brassica vegetables is associated with a reduced abundance of sulphate‐reducing bacteria: a randomised crossover study. Mol Nutr Food Res 61(9):1600992
Article
Google Scholar
Ellis RJ, Bruce KD, Jenkins C, Stothard JR, Ajarova L, Mugisha L, Viney ME (2013) Comparison of the distal gut microbiota from people and animals in Africa. PLoS ONE 8:1. https://doi.org/10.1371/journal.pone.0054783
CAS
Article
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. https://doi.org/10.1128/aem.00062-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Le Gall G, Guttula K, Kellingray L, Tett AJ, Ten Hoopen R, Kemsley KE, Savva GM, Ibrahim A, Narbad A (2018) Metabolite quantification of faecal extracts from colorectal cancer patients and healthy controls. Oncotarget 9(70):33278
Article
Google Scholar
Magrath R, Bano F, Morgner M, Parkin I, Sharpe A, Lister C, Dean C, Turner J, Lydiate D, Mithen R (1994) Genetics of aliphatic glucosinolates. 1. Side-chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72:290–299. https://doi.org/10.1038/hdy.1994.39
CAS
Article
Google Scholar
Wang RF, Cao WW, Cerniglia CE (1996) Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation. Int J Syst Bacteriol 46(1):341–343
CAS
Article
Google Scholar
Nueno-Palop C, Narbad A (2011) Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut. Int J Food Microbiol 145(2–3):390–394. https://doi.org/10.1016/j.ijfoodmicro.2010.12.029
CAS
Article
PubMed
Google Scholar
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(D1):D633–D642. https://doi.org/10.1093/nar/gkt1244
CAS
Article
PubMed
Google Scholar
Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580
CAS
Article
Google Scholar
Filannino P, Bai Y, Di Cagno R, Gobbetti M, Gaenzle MG (2015) Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol 46:272–279. https://doi.org/10.1016/j.fm.2014.08.018
CAS
Article
PubMed
Google Scholar
Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM (2008) Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr 99(1):110–120. https://doi.org/10.1017/S0007114507793923
CAS
Article
PubMed
Google Scholar
Costabile A, Kolida S, Klinder A, Gietl E, Baeuerlein M, Frohberg C, Landschuetze V, Gibson GR (2010) A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr 104(7):1007–1017. https://doi.org/10.1017/s0007114510001571
CAS
Article
PubMed
Google Scholar
Liu Z, Lin X, Huang G, Zhang W, Rao P, Ni L (2014) Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe 26:1–6. https://doi.org/10.1016/j.anaerobe.2013.11.007
CAS
Article
PubMed
Google Scholar
Dominika Ś, Arjan N, Karyn RP, Henryk K (2011) The study on the impact of glycated pea proteins on human intestinal bacteria. Int J Food Microbiol 145(1):267–272
CAS
Article
Google Scholar
Houben K, Jolie RP, Fraeye I, Van Loey AM, Hendrickx ME (2011) Comparative study of the cell wall composition of broccoli, carrot, and tomato: structural characterization of the extractable pectins and hemicelluloses. Carbohyd Res 346(9):1105–1111. https://doi.org/10.1016/j.carres.2011.04.014
CAS
Article
Google Scholar
Binder HJ (2010) Role of colonic short-chain fatty acid transport in diarrhea. In: Annual review of physiology, vol 72. Annual Review of Physiology. pp 297–313. https://doi.org/10.1146/annurev-physiol-021909-135817
Guo T, Zhang L, Xin Y, Xu Z, He H, Kong J (2017) The oxygen-inducible conversion of lactate to acetate in heterofermentative Lactobacillus brevis ATCC367. Appl Environ Microbiol 2017:01659–11617
Google Scholar
Reichardt N, Duncan SH, Young P, Belenguer A, Leitch CM, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8(6):1323–1335. https://doi.org/10.1038/ismej.2014.14
CAS
Article
PubMed
PubMed Central
Google Scholar
Prabhu R, Altman E, Eiteman MA (2012) Lactate and Acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Appl Environ Microbiol 78(24):8564–8570. https://doi.org/10.1128/aem.02443-12
CAS
Article
PubMed
PubMed Central
Google Scholar
Marounek M, Fliegrova K, Bartos S (1989) Metabolism and some characteristics of ruminal strains of megasphaera-elsdenii. Appl Environ Microbiol 55(6):1570–1573
CAS
Article
Google Scholar
SimalaGrant JL, Weiner JH (1996) Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology-Uk 142:3231–3239
CAS
Article
Google Scholar
Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta-Bioenergetics 1320(3):217–234. https://doi.org/10.1016/s0005-2728(97)00034-0
CAS
Article
Google Scholar
Ezraty B, Grimaud R, El Hassouni M, Moinier D, Barras F (2004) Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. EMBO J 23(8):1868–1877. https://doi.org/10.1038/sj.emboj.7600172
CAS
Article
PubMed
PubMed Central
Google Scholar
Gon S, Faulkner MJ, Beckwith J (2006) In vivo requirement for glutaredoxins and thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli. Antioxid Redox Signal 8(5–6):735–742. https://doi.org/10.1089/ars.2006.8.735
CAS
Article
PubMed
Google Scholar