Cholesterol Treatment Trialists’ (CTT) Collaboration (2012) The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380(9841):581–590.https://doi.org/10.1016/s0140-6736(12)60367-5
Cohen DE (2008) Balancing cholesterol synthesis and absorption in the gastrointestinal tract. J Clin Lipidol 2(2):S1–S3. https://doi.org/10.1016/j.jacl.2008.01.004
PubMed
PubMed Central
Article
Google Scholar
Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69(1):30–42. https://doi.org/10.1093/ajcn/69.1.30
CAS
PubMed
Article
Google Scholar
Feuerstein JS, Bjerke WS (2012) Powdered red yeast rice and plant stanols and sterols to lower cholesterol. J Diet Suppl 9(2):110–115
CAS
PubMed
Article
Google Scholar
van den Driessche JJ, Plat J, Mensink RP (2018) Effects of superfoods on risk factors of metabolic syndrome: a systematic review of human intervention trials. Food Funct 9(4):1944–1966. https://doi.org/10.1039/c7fo01792h
CAS
PubMed
Article
Google Scholar
Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29(2):949–982. https://doi.org/10.1007/s10811-016-0974-5
CAS
PubMed
Article
Google Scholar
Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V (2014) Functional ingredients from microalgae. Food Funct 5(8):1669–1685. https://doi.org/10.1039/c4fo00125g
CAS
PubMed
Article
Google Scholar
Iwata K, Inayama T, Kato T (1990) Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. J Nutr Sci Vitaminol 36(2):165–171
CAS
PubMed
Article
Google Scholar
Nagaoka S, Shimizu K, Kaneko H, Shibayama F, Morikawa K, Kanamaru Y, Otsuka A, Hirahashi T, Kato T (2005) A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J Nutr 135(10):2425–2430
CAS
PubMed
Article
Google Scholar
Lee EH, Park JE, Choi YJ, Huh KB, Kim WY (2008) A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutr Res Pract 2(4):295–300. https://doi.org/10.4162/nrp.2008.2.4.295
PubMed
PubMed Central
Article
Google Scholar
Mani UV, Desai S, Iyer U (2000) Studies on the long-term effect of spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients. J Nutraceutic Functi Med Foods 2(3):25–32. https://doi.org/10.1300/J133v02n03_03
Article
Google Scholar
Ngo-Matip ME, Pieme CA, Azabji-Kenfack M, Biapa PC, Germaine N, Heike E, Moukette BM, Emmanuel K, Philippe S, Mbofung CM, Ngogang JY (2014) Effects of Spirulina platensis supplementation on lipid profile in HIV-infected antiretroviral naive patients in Yaounde-Cameroon: a randomized trial study. Lipids Health Dis 13:191. https://doi.org/10.1186/1476-511x-13-191
PubMed
PubMed Central
Article
Google Scholar
Ramamoorthy A, Premakumari S (1996) Effect of supplementation of spirulina on hypercholesterolemic patients. J Food Sci Technol 33(2):124–128
Google Scholar
Samuels R, Mani UV, Iyer UM, Nayak US (2002) Hypocholesterolemic effect of spirulina in patients with hyperlipidemic nephrotic syndrome. J Med Food 5(2):91–96. https://doi.org/10.1089/109662002760178177
CAS
PubMed
Article
Google Scholar
Zeinalian R, Farhangi MA, Shariat A, Saghafi-Asl M (2017) The effects of Spirulina Platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: a randomized double blinded placebo controlled trial. BMC Complement Altern Med 17(1):225. https://doi.org/10.1186/s12906-017-1670-y
CAS
PubMed
PubMed Central
Article
Google Scholar
Zava TT, Zava DT (2011) Assessment of Japanese iodine intake based on seaweed consumption in Japan: a literature-based analysis. Thyroid Res 4:14. https://doi.org/10.1186/1756-6614-4-14
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang H, Pang Z, Han C (2014) Undaria pinnatifida (Wakame): a seaweed with pharmacological properties. Sci Int 2(2):32–36
CAS
Article
Google Scholar
Grasa-López A, Miliar-García Á, Quevedo-Corona L, Paniagua-Castro N, Escalona-Cardoso G, Reyes-Maldonado E, Jaramillo-Flores M-E (2016) Undaria pinnatifida and fucoxanthin ameliorate lipogenesis and markers of both inflammation and cardiovascular dysfunction in an animal model of diet-induced obesity. Mar Drugs 14(8):148. https://doi.org/10.3390/md14080148
CAS
PubMed Central
Article
Google Scholar
Iritani N, Nogi J (1972) Effect of spinach and wakame on cholesterol turnover in the rat. Atherosclerosis 15(1):87–92
CAS
PubMed
Article
Google Scholar
Yoshinaga K, Nakai Y, Izumi H, Nagaosa K, Ishijima T, Nakano T, Abe K (2018) Oral administration of edible seaweed Undaria pinnatifida (wakame) modifies glucose and lipid metabolism in rats: a DNA microarray analysis. Mol Nutr Food Res 62(12):e1700828. https://doi.org/10.1002/mnfr.201700828
CAS
PubMed
Article
Google Scholar
Jeon SM, Kim HJ, Woo MN, Lee MK, Shin YC, Park YB, Choi MS (2010) Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol J 5(9):961–969. https://doi.org/10.1002/biot.201000215
CAS
PubMed
Article
Google Scholar
Hata Y, Nakajima K, Uchida J-i, Hidaka H, Nakano T (2001) Clinical effects of brown seaweed, Undariapinnatifida (wakame), on blood pressure in hypertensive subjects. J Clin Biochem Nutr 30:43–53. https://doi.org/10.3164/jcbn.30.43
Article
Google Scholar
Teas J, Baldeon ME, Chiriboga DE, Davis JR, Sarries AJ, Braverman LE (2009) Could dietary seaweed reverse the metabolic syndrome? Asia Pac J Clin Nutr 18(2):145–154
CAS
PubMed
Google Scholar
Teas J, Irhimeh MR (2012) Dietary algae and HIV/AIDS: proof of concept clinical data. J Appl Phycol 24(3):575–582. https://doi.org/10.1007/s10811-011-9766-0
CAS
PubMed
Article
Google Scholar
Hernandez-Corona DM, Martinez-Abundis E, Gonzalez-Ortiz M (2014) Effect of fucoidan administration on insulin secretion and insulin resistance in overweight or obese adults. J Med Foods 17(7):830–832. https://doi.org/10.1089/jmf.2013.0053
CAS
Article
Google Scholar
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645. https://doi.org/10.1161/circulationaha.109.192644
CAS
PubMed
Article
Google Scholar
Huang H, Liao D, Pu R, Cui Y (2018) Quantifying the effects of spirulina supplementation on plasma lipid and glucose concentrations, body weight, and blood pressure. Diabetes Metab Syndr Obes Targets Ther 11:729–742. https://doi.org/10.2147/dmso.s185672
CAS
Article
Google Scholar
Teunissen CE, Mulder M, de Vente J, von Bergmann K, De Bruijn C, Steinbusch HW, Lutjohann D (2001) Concentrations of different sterols in the striatum and serum of 3-nitropropionic acid-treated Wistar and Lewis rats. Neurochem Res 26(11):1237–1244
CAS
PubMed
Article
Google Scholar
Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502
CAS
PubMed
Article
Google Scholar
Brull F, De Smet E, Mensink RP, Vreugdenhil A, Kerksiek A, Lutjohann D, Wesseling G, Plat J (2016) Dietary plant stanol ester consumption improves immune function in asthma patients: results of a randomized, double-blind clinical trial. Am J Clin Nutr 103(2):444–453. https://doi.org/10.3945/ajcn.115.117531
CAS
PubMed
Article
Google Scholar
Mensink RP, de Jong A, Lutjohann D, Haenen GR, Plat J (2010) Plant stanols dose-dependently decrease LDL-cholesterol concentrations, but not cholesterol-standardized fat-soluble antioxidant concentrations, at intakes up to 9 g/d. Am J Clin Nutr 92(1):24–33. https://doi.org/10.3945/ajcn.2009.29143
CAS
PubMed
Article
Google Scholar
Baumgartner S, Mensink RP, Husche C, Lutjohann D, Plat J (2013) Effects of plant sterol- or stanol-enriched margarine on fasting plasma oxyphytosterol concentrations in healthy subjects. Atherosclerosis 227(2):414–419. https://doi.org/10.1016/j.atherosclerosis.2013.01.012
CAS
PubMed
Article
Google Scholar
Thuluva SC, Igel M, Giesa U, Lutjohann D, Sudhop T, von Bergmann K (2005) Ratio of lathosterol to campesterol in serum predicts the cholesterol-lowering effect of sitostanol-supplemented margarine. Int J Clin Pharmacol Ther 43(7):305–310
CAS
PubMed
Article
Google Scholar
Miettinen TA, Tilvis RS, Kesaniemi YA (1990) Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am Journal Epidemiol 131(1):20–31
CAS
Article
Google Scholar
Ohta A, Kato H, Ishii S, Nagai Y, Tanaka Y (2017) Effect of ezetimibe monotherapy on low-density lipoprotein cholesterol and on markers of cholesterol synthesis and absorption in Japanese patients with hypercholesterolemia. J Clin Med Res 9(6):476–481. https://doi.org/10.14740/jocmr2782w
CAS
PubMed
PubMed Central
Article
Google Scholar
Anitha L, Chandralekha K (2010) Effect of supplementation of Spirulina on blood glucose, glycosylated hemoglobin and lipid profile of male non-insulin dependent diabetics. Asian J Exp Biol Sci 1(1):36–46
CAS
Google Scholar
Mensink RP, Ebbing S, Lindhout M, Plat J, van Heugten MM (2002) Effects of plant stanol esters supplied in low-fat yoghurt on serum lipids and lipoproteins, non-cholesterol sterols and fat soluble antioxidant concentrations. Atherosclerosis 160(1):205–213
CAS
PubMed
Article
Google Scholar
Knopp RH, Gitter H, Truitt T, Bays H, Manion CV, Lipka LJ, LeBeaut AP, Suresh R, Yang B, Veltri EP (2003) Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J 24(8):729–741
CAS
PubMed
Article
Google Scholar
Kamalpreet K, Rajbir S, Kiran G (2008) Effect of supplementation of Spirulina on blood glucose and lipid profile of the non-insulin dependent diabetic male subjects. J Dairy Foods Home Sci 27(3and4):202–208
Parikh P, Mani U, Iyer U (2001) Role of spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus. J Med Food 4(4):193–199. https://doi.org/10.1089/10966200152744463
PubMed
Article
Google Scholar
Szulinska M, Gibas-Dorna M, Miller-Kasprzak E, Suliburska J, Miczke A, Walczak-Galezewska M, Stelmach-Mardas M, Walkowiak J, Bogdanski P (2017) Spirulina maxima improves insulin sensitivity, lipid profile, and total antioxidant status in obese patients with well-treated hypertension: a randomized double-blind placebo-controlled study. Eur Rev Med Pharmacol Sci 21(10):2473–2481
CAS
PubMed
Google Scholar
Park HJ, Lee YJ, Ryu HK, Kim MH, Chung HW, Kim WY (2008) A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans. Ann Nutr Metab 52(4):322–328. https://doi.org/10.1159/000151486
CAS
PubMed
Article
Google Scholar
Lee YK, Lim D-J, Lee Y-H, Park Y-I (2006) Variation in fucoidan contents and monosaccharide compositions of Korean Undariapinnatifida (Harvey) suringar (Phaeophyta). Algae 21(1):157–160. https://doi.org/10.4490/algae.2006.21.1.157
Article
Google Scholar
Ngo-Matip M-E, Pieme CA, Azabji-Kenfack M, Moukette BM, Korosky E, Stefanini P, Ngogang JY, Mbofung CM (2015) Impact of daily supplementation of Spirulina platensis on the immune system of naïve HIV-1 patients in Cameroon: a 12-months single blind, randomized, multicenter trial. Nutr J 14:70–70. https://doi.org/10.1186/s12937-015-0058-4
PubMed
PubMed Central
Article
Google Scholar
Miczke A, Szulinska M, Hansdorfer-Korzon R, Kregielska-Narozna M, Suliburska J, Walkowiak J, Bogdanski P (2016) Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: a double-blind, placebo-controlled, randomized trial. Eur Rev Med Pharmacol Sci 20(1):150–156
CAS
PubMed
Google Scholar