Abstract
Purpose
Several supplements are purported to promote muscle hypertrophy and strength gains in healthy subjects, or to prevent muscle wasting in atrophying situations (e.g., ageing or disuse periods). However, their effectiveness remains unclear.
Methods
This review summarizes the available evidence on the beneficial impacts of several popular supplements on muscle mass or strength.
Results
Among the supplements tested, nitrate and caffeine returned sufficient evidence supporting their acute beneficial effects on muscle strength, whereas the long-term consumption of creatine, protein and polyunsaturated fatty acids seems to consistently increase or preserve muscle mass and strength (evidence level A). On the other hand, mixed or unclear evidence was found for several popular supplements including branched-chain amino acids, adenosine triphosphate, citrulline, β-Hydroxy-β-methylbutyrate, minerals, most vitamins, phosphatidic acid or arginine (evidence level B), weak or scarce evidence was found for conjugated linoleic acid, glutamine, resveratrol, tribulus terrestris or ursolic acid (evidence level C), and no evidence was found for other supplements such as ornithine or α-ketoglutarate (evidence D). Of note, although most supplements appear to be safe when consumed at typical doses, some adverse events have been reported for some of them (e.g., caffeine, vitamins, α-ketoglutarate, tribulus terrestris, arginine) after large intakes, and there is insufficient evidence to determine the safety of many frequently used supplements (e.g., ornithine, conjugated linoleic acid, ursolic acid).
Conclusion
In summary, despite their popularity, there is little evidence supporting the use of most supplements, and some of them have been even proven ineffective or potentially associated with adverse effects.
This is a preview of subscription content, access via your institution.
References
McGuigan MR, Wright GA, Fleck SJ (2012) Strength training for athletes: does it really help sports performance? Int J Sports Physiol Perform 7(1):2–5. https://doi.org/10.1123/ijspp.7.1.2
Spahillari A, Mukamal KJ, DeFilippi C, Kizer JR, Gottdiener JS, Djoussé L, Lyles MF, Bartz TM, Murthy VL, Shah RV (2016) The association of lean and fat mass with all-cause mortality in older adults: the cardiovascular health study. Nutr Metab Cardiovasc Dis 26(11):1039–1047. https://doi.org/10.1016/j.numecd.2016.06.011
Volaklis KA, Halle M, Meisinger C (2015) Muscular strength as a strong predictor of mortality: a narrative review. Eur J Intern Med 26(5):303–310. https://doi.org/10.1016/j.ejim.2015.04.013
Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17(2):162–184. https://doi.org/10.1016/j.cmet.2012.12.012. (S1550-4131(12)00503-7 [pii])
Millward DJ, Garlick PJ, Stewart RJ, Nnanyelugo DO, Waterlow JC (1975) Skeletal-muscle growth and protein turnover. Biochem J 150(2):235–243
Phillips SM (2014) A brief review of higher dietary protein diets in weight loss: a focus on athletes. Sports Med 44(Suppl 2):S149–S153. https://doi.org/10.1007/s40279-014-0254-y
Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ (2012) Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr 96(6):1454–1464. https://doi.org/10.3945/ajcn.112.037556
Naderi A, de Oliveira EP, Ziegenfuss TN, Willems MT (2016) Timing, optimal dose and intake duration of dietary supplements with evidence-based use in sports nutrition. J Exerc Nutr Biochem 20(4):1–12. https://doi.org/10.20463/jenb.2016.0031
Ronis MJJ, Pedersen KB, Watt J (2018) Adverse Effects of Nutraceuticals and Dietary Supplements. Annu Rev Pharmacol Toxicol 58:583–601. https://doi.org/10.1146/annurev-pharmtox-010617-052844
Knapik JJ, Steelman RA, Hoedebecke SS, Austin KG, Farina EK, Lieberman HR (2016) Prevalence of dietary supplement use by athletes: systematic review and meta-analysis. Sports Med 46(1):103–123. https://doi.org/10.1007/s40279-015-0387-7
Wardenaar FC, Ceelen IJ, Van Dijk JW, Hangelbroek RW, Van Roy L, Van der Pouw B, De Vries JH, Mensink M, Witkamp RF (2017) Nutritional supplement use by dutch elite and sub-elite athletes: does receiving dietary counseling make a difference? Int J Sport Nutr Exerc Metab 27(1):32–42. https://doi.org/10.1123/ijsnem.2016-0157
Nissen SL, Sharp RL (2003) Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis. J Appl Physiol (1985) 94(2):651–659. https://doi.org/10.1152/japplphysiol.00755.2002
Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N, Reginster JY, Chapurlat R, Chan DC, Bruyère O, Rizzoli R, Cooper C, Dennison EM, Group I-ESW (2017) Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 28 (6):1817–1833. https://doi.org/10.1007/s00198-017-3980-9
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB (2018) ISSN exercise and sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 15(1):38. https://doi.org/10.1186/s12970-018-0242-y
Goldman A, Basaria S (2017) Adverse health effects of androgen use. Mol Cell Endocrinol https://doi.org/10.1016/j.mce.2017.06.009
Thomas DT, Erdman KA, Burke LM (2016) American College of Sports Medicine Joint Position Statement. Nutrition and athletic performance. Med Sci Sports Exerc 48(3):543–568. https://doi.org/10.1249/MSS.0000000000000852
Davis JK, Green JM (2009) Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med 39(10):813–832. https://doi.org/10.2165/11317770-000000000-00000
Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM (2009) Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res 23(1):315–324. https://doi.org/10.1519/JSC.0b013e31818b979a
Burke LM (2008) Caffeine and sports performance. Appl Physiol Nutr Metab 33(6):1319–1334. https://doi.org/10.1139/H08-130
Spriet LL (2014) Exercise and sport performance with low doses of caffeine. Sports Med 44 (Suppl 2):S175–S184. https://doi.org/10.1007/s40279-014-0257-8
Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z (2018) The influence of caffeine supplementation on resistance exercise: a review. Sports Med. https://doi.org/10.1007/s40279-018-0997-y
Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML (2010) Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc 42(7):1375–1387. https://doi.org/10.1249/MSS.0b013e3181cabbd8
Duncan MJ, Oxford SW (2011) The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res 25(1):178–185. https://doi.org/10.1519/JSC.0b013e318201bddb
Duncan MJ, Smith M, Cook K, James RS (2012) The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure. J Strength Cond Res 26(10):2858–2865. https://doi.org/10.1519/JSC.0b013e318241e124
Jacobs I, Pasternak H, Bell DG (2003) Effects of ephedrine, caffeine, and their combination on muscular endurance. Med Sci Sports Exerc 35(6):987–994. https://doi.org/10.1249/01.MSS.0000069916.49903.70
Williams AD, Cribb PJ, Cooke MB, Hayes A (2008) The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes. J Strength Cond Res 22(2):464–470. https://doi.org/10.1519/JSC.0b013e3181660320
Astorino TA, Martin BJ, Schachtsiek L, Wong K, Ng K (2011) Minimal effect of acute caffeine ingestion on intense resistance training performance. J Strength Cond Res 25(6):1752–1758. https://doi.org/10.1519/JSC.0b013e3181ddf6db
Green JM, Wickwire PJ, McLester JR, Gendle S, Hudson G, Pritchett RC, Laurent CM (2007) Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. Int J Sports Physiol Perform 2(3):250–259
Goldstein E, Jacobs PL, Whitehurst M, Penhollow T, Antonio J (2010) Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr 7:18. https://doi.org/10.1186/1550-2783-7-18
Grgic J, Trexler ET, Lazinica B, Pedisic Z (2018) Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr 15:11. https://doi.org/10.1186/s12970-018-0216-0
Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, Rawson ES, Walsh NP, Garthe I, Geyer H, Meeusen R, van Loon LJC, Shirreffs SM, Spriet LL, Stuart M, Vernec A, Currell K, Ali VM, Budgett RG, Ljungqvist A, Mountjoy M, Pitsiladis YP, Soligard T, Erdener U, Engebretsen L (2018) IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med 52(7):439–455. https://doi.org/10.1136/bjsports-2018-099027
Graham TE (2001) Caffeine and exercise: metabolism, endurance and performance. Sports Med 31(11):785–807. https://doi.org/10.2165/00007256-200131110-00002
Trexler ET, Smith-Ryan AE, Roelofs EJ, Hirsch KR, Mock MG (2016) Effects of coffee and caffeine anhydrous on strength and sprint performance. Eur J Sport Sci 16(6):702–710. https://doi.org/10.1080/17461391.2015.1085097
Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80(3):1107–1213
Walker JB (1979) Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol 50:177–242
Balsom PD, Söderlund K, Ekblom B (1994) Creatine in humans with special reference to creatine supplementation. Sports Med 18(4):268–280
Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J (2007) International Society of sports nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr 4:6. https://doi.org/10.1186/1550-2783-4-6
Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL (2017) International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 14:18. https://doi.org/10.1186/s12970-017-0173-z
Spillane M, Schoch R, Cooke M, Harvey T, Greenwood M, Kreider R, Willoughby DS (2009) The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J Int Soc Sports Nutr 6:6. https://doi.org/10.1186/1550-2783-6-6
Gill ND, Hall RD, Blazevich AJ (2004) Creatine serum is not as effective as creatine powder for improving cycle sprint performance in competitive male team-sport athletes. J Strength Cond Res 18(2):272–275. https://doi.org/10.1519/R-13193.1
Jagim AR, Oliver JM, Sanchez A, Galvan E, Fluckey J, Riechman S, Greenwood M, Kelly K, Meininger C, Rasmussen C, Kreider RB (2012) A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. J Int Soc Sports Nutr 9(1):43. https://doi.org/10.1186/1550-2783-9-43
Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH (2010) Exploring the therapeutic role of creatine supplementation. Amino Acids 38(1):31–44. https://doi.org/10.1007/s00726-009-0263-6
Deane CS, Wilkinson DJ, Phillips BE, Smith K, Etheridge T, Atherton PJ (2017) “Nutraceuticals” in relation to human skeletal muscle and exercise. Am J Physiol Endocrinol Metab 312(4):E282–E299. https://doi.org/10.1152/ajpendo.00230.2016
Lanhers C, Pereira B, Naughton G, Trousselard M, Lesage FX, Dutheil F (2015) Creatine supplementation and lower limb strength performance: a systematic review and meta-analyses. Sports Med 45(9):1285–1294. https://doi.org/10.1007/s40279-015-0337-4
Lanhers C, Pereira B, Naughton G, Trousselard M, Lesage FX, Dutheil F (2017) Creatine supplementation and upper limb strength performance: a systematic review and meta-analysis. Sports Med 47(1):163–173. https://doi.org/10.1007/s40279-016-0571-4
Johnston AP, Burke DG, MacNeil LG, Candow DG (2009) Effect of creatine supplementation during cast-induced immobilization on the preservation of muscle mass, strength, and endurance. J Strength Cond Res 23(1):116–120
Hespel P, Op’t Eijnde B, Van Leemputte M, Ursø B, Greenhaff PL, Labarque V, Dymarkowski S, Van Hecke P, Richter EA (2001) Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 536(Pt 2):625–633
Burke DG, Candow DG, Chilibeck PD, MacNeil LG, Roy BD, Tarnopolsky MA, Ziegenfuss T (2008) Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults. Int J Sport Nutr Exerc Metab 18(4):389–398
Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Moran M, Emanuele E, Joyner MJ, Lucia A (2015) Exercise attenuates the major hallmarks of aging. Rejuvenation Res 18(1):57–89. https://doi.org/10.1089/rej.2014.1623
Lobo DM, Tritto AC, da Silva LR, de Oliveira PB, Benatti FB, Roschel H, Nieß B, Gualano B, Pereira RM (2015) Effects of long-term low-dose dietary creatine supplementation in older women. Exp Gerontol 70:97–104. https://doi.org/10.1016/j.exger.2015.07.012
Cooper R, Naclerio F, Allgrove J, Jimenez A (2012) Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr 9(1):33. https://doi.org/10.1186/1550-2783-9-33
Antonio J, Ciccone V (2013) The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J Int Soc Sports Nutr 10:36. https://doi.org/10.1186/1550-2783-10-36
Candow DG, Zello GA, Ling B, Farthing JP, Chilibeck PD, McLeod K, Harris J, Johnson S (2014) Comparison of creatine supplementation before versus after supervised resistance training in healthy older adults. Res Sports Med 22(1):61–74. https://doi.org/10.1080/15438627.2013.852088
Candow DG, Vogt E, Johannsmeyer S, Forbes SC, Farthing JP (2015) Strategic creatine supplementation and resistance training in healthy older adults. Appl Physiol Nutr Metab 40 (7):689–694. https://doi.org/10.1139/apnm-2014-0498
Gualano B, Roschel H, Lancha AH, Brightbill CE, Rawson ES (2012) In sickness and in health: the widespread application of creatine supplementation. Amino Acids 43(2):519–529. https://doi.org/10.1007/s00726-011-1132-7
Kley RA, Tarnopolsky MA, Vorgerd M (2008) Creatine treatment in muscle disorders: a meta-analysis of randomised controlled trials. J Neurol Neurosurg Psychiatry 79(4):366–367. https://doi.org/10.1136/jnnp.2007.127571
Candow DG, Chilibeck PD, Forbes SC (2014) Creatine supplementation and aging musculoskeletal health. Endocrine 45(3):354–361. https://doi.org/10.1007/s12020-013-0070-4
Moon A, Heywood L, Rutherford S, Cobbold C (2013) Creatine supplementation: can it improve quality of life in the elderly without associated resistance training? Curr Aging Sci 6(3):251–257
Cañete S, San Juan AF, Pérez M, Gómez-Gallego F, López-Mojares LM, Earnest CP, Fleck SJ, Lucia A (2006) Does creatine supplementation improve functional capacity in elderly women? J Strength Cond Res 20(1):22–28. https://doi.org/10.1519/R-17044.1
Gotshalk LA, Volek JS, Staron RS, Denegar CR, Hagerman FC, Kraemer WJ (2002) Creatine supplementation improves muscular performance in older men. Med Sci Sports Exerc 34(3):537–543
Pritchard NR, Kalra PA (1998) Renal dysfunction accompanying oral creatine supplements. Lancet 351(9111):1252–1253
Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11(5):1859–1874. https://doi.org/10.1091/mbc.11.5.1859
Smith LW, Smith JD, Criswell DS (2002) Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J Appl Physiol 92(5):2005–2011. https://doi.org/10.1152/japplphysiol.00950.2001
Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81(1):209–237
Lundberg JO, Govoni M (2004) Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med 37(3):395–400. https://doi.org/10.1016/j.freeradbiomed.2004.04.027
Jonvik KL, Nyakayiru J, van Dijk JW, Wardenaar FC, van Loon LJ, Verdijk LB (2017) Habitual dietary nitrate intake in highly trained athletes. Int J Sport Nutr Exerc Metab 27(2):148–157. https://doi.org/10.1123/ijsnem.2016-0239
Hoon MW, Jones AM, Johnson NA, Blackwell JR, Broad EM, Lundy B, Rice AJ, Burke LM (2014) The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2,000-m rowing performance in trained athletes. Int J Sports Physiol Perform 9(4):615–620. https://doi.org/10.1123/ijspp.2013-0207
Peeling P, Cox GR, Bullock N, Burke LM (2015) Beetroot juice improves on-water 500 m time-trial performance, and laboratory-based paddling economy in national and international-level kayak athletes. Int J Sport Nutr Exerc Metab 25(3):278–284. https://doi.org/10.1123/ijsnem.2014-0110
Clements WT, Lee SR, Bloomer RJ (2014) Nitrate ingestion: a review of the health and physical performance effects. Nutrients 6(11):5224–5264. https://doi.org/10.3390/nu6115224
Bescós R, Sureda A, Tur JA, Pons A (2012) The effect of nitric-oxide-related supplements on human performance. Sports Med 42(2):99–117. https://doi.org/10.2165/11596860-000000000-00000
Fulford J, Winyard PG, Vanhatalo A, Bailey SJ, Blackwell JR, Jones AM (2013) Influence of dietary nitrate supplementation on human skeletal muscle metabolism and force production during maximum voluntary contractions. Pflugers Archiv Eur J Physiol 465(4):517–528. https://doi.org/10.1007/s00424-013-1220-5
Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, Wilkerson DP, Benjamin N, Jones AM (2010) Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol 109(1):135–148. https://doi.org/10.1152/japplphysiol.00046.2010
Mosher SL, Sparks SA, Williams EL, Bentley DJ, Mc Naughton LR (2016) Ingestion of a nitric oxide enhancing supplement improves resistance exercise performance. J Strength Cond Res 30(12):3520–3524. https://doi.org/10.1519/JSC.0000000000001437
Hoon MW, Fornusek C, Chapman PG, Johnson NA (2015) The effect of nitrate supplementation on muscle contraction in healthy adults. Eur J Sport Sci 15(8):712–719. https://doi.org/10.1080/17461391.2015.1053418
Schoenfeld BJ, Ogborn D, Krieger JW (2017) Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci 35(11):1073–1082. https://doi.org/10.1080/02640414.2016.1210197
Bryan NS, Alexander DD, Coughlin JR, Milkowski AL, Boffetta P (2012) Ingested nitrate and nitrite and stomach cancer risk: an updated review. Food Chem Toxicol 50(10):3646–3665. https://doi.org/10.1016/j.fct.2012.07.062
Schoenfeld BJ, Aragon AA, Krieger JW (2013) The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. J Int Soc Sports Nutr 10(1):53. https://doi.org/10.1186/1550-2783-10-53
Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM (2009) Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107(3):987–992. https://doi.org/10.1152/japplphysiol.00076.2009
Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, Aragon AA, Devries MC, Banfield L, Krieger JW, Phillips SM (2017) A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. https://doi.org/10.1136/bjsports-2017-097608
Xu ZR, Tan ZJ, Zhang Q, Gui QF, Yang YM (2014) Clinical effectiveness of protein and amino acid supplementation on building muscle mass in elderly people: a meta-analysis. PLoS One 9(9):e109141. https://doi.org/10.1371/journal.pone.0109141
Finger D, Goltz FR, Umpierre D, Meyer E, Rosa LH, Schneider CD (2015) Effects of protein supplementation in older adults undergoing resistance training: a systematic review and meta-analysis. Sports Med 45(2):245–255. https://doi.org/10.1007/s40279-014-0269-4
Thomas DK, Quinn MA, Saunders DH, Greig CA (2016) Protein supplementation does not significantly augment the effects of resistance exercise training in older adults: a systematic review. J Am Med Dir Assoc 17(10):959.e951–959.e959. https://doi.org/10.1016/j.jamda.2016.07.002
Gillen JB, Trommelen J, Wardenaar FC, Brinkmans NY, Versteegen JJ, Jonvik KL, Kapp C, de Vries J, van den Borne JJ, Gibala MJ, van Loon LJ (2017) Dietary protein intake and distribution patterns of well-trained dutch athletes. Int J Sport Nutr Exerc Metab 27(2):105–114. https://doi.org/10.1123/ijsnem.2016-0154
Phillips SM, Moore DR, Tang JE (2007) A critical examination of dietary protein requirements, benefits, and excesses in athletes. Int J Sport Nutr Exerc Metab 17 Suppl:S58-76
Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG (2013) Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 591(9):2319–2331. https://doi.org/10.1113/jphysiol.2012.244897
Mamerow MM, Mettler JA, English KL, Casperson SL, Arentson-Lantz E, Sheffield-Moore M, Layman DK, Paddon-Jones D (2014) Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr 144(6):876–880. https://doi.org/10.3945/jn.113.185280
Stark M, Lukaszuk J, Prawitz A, Salacinski A (2012) Protein timing and its effects on muscular hypertrophy and strength in individuals engaged in weight-training. J Int Soc Sports Nutr 9(1):54. https://doi.org/10.1186/1550-2783-9-54
Yang Y, Churchward-Venne TA, Burd NA, Breen L, Tarnopolsky MA, Phillips SM (2012) Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr Metab (Lond) 9(1):57. https://doi.org/10.1186/1743-7075-9-57
Burd NA, Yang Y, Moore DR, Tang JE, Tarnopolsky MA, Phillips SM (2012) Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men. Br J Nutr 108(6):958–962. https://doi.org/10.1017/S0007114511006271
Galvan E, Arentson-Lantz E, Lamon S, Paddon-Jones D (2016) Protecting skeletal muscle with protein and amino acid during periods of disuse. Nutrients 8 (7). https://doi.org/10.3390/nu8070404
Volek JS, Volk BM, Gómez AL, Kunces LJ, Kupchak BR, Freidenreich DJ, Aristizabal JC, Saenz C, Dunn-Lewis C, Ballard KD, Quann EE, Kawiecki DL, Flanagan SD, Comstock BA, Fragala MS, Earp JE, Fernandez ML, Bruno RS, Ptolemy AS, Kellogg MD, Maresh CM, Kraemer WJ (2013) Whey protein supplementation during resistance training augments lean body mass. J Am Coll Nutr 32(2):122–135. https://doi.org/10.1080/07315724.2013.793580
Cribb PJ, Williams AD, Carey MF, Hayes A (2006) The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sport Nutr Exerc Metab 16(5):494–509
Demling RH, DeSanti L (2000) Effect of a hypocaloric diet, increased protein intake and resistance training on lean mass gains and fat mass loss in overweight police officers. Ann Nutr Metab 44(1):21–29. doi:12817
Candow DG, Burke NC, Smith-Palmer T, Burke DG (2006) Effect of whey and soy protein supplementation combined with resistance training in young adults. Int J Sport Nutr Exerc Metab 16(3):233–244
Wilborn CD, Taylor LW, Outlaw J, Williams L, Campbell B, Foster CA, Smith-Ryan A, Urbina S, Hayward S (2013) The effects of pre- and post-exercise whey vs. casein protein consumption on body composition and performance measures in collegiate female athletes. J Sports Sci Med 12(1):74–79
Institute-of-Medicine (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academies Press, Washington
Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, Smith-Ryan AE, Stout JR, Arciero PJ, Ormsbee MJ, Taylor LW, Wilborn CD, Kalman DS, Kreider RB, Willoughby DS, Hoffman JR, Krzykowski JL, Antonio J (2017) International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr 14:20. https://doi.org/10.1186/s12970-017-0177-8
Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR (2000) The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab 85(12):4481–4490. https://doi.org/10.1210/jcem.85.12.7021
Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, Phillips SM (2015) Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci 70(1):57–62. https://doi.org/10.1093/gerona/glu103
Antonio J, Ellerbroek A, Silver T, Vargas L, Peacock C (2016) The effects of a high protein diet on indices of health and body composition–a crossover trial in resistance-trained men. J Int Soc Sports Nutr 13:3. https://doi.org/10.1186/s12970-016-0114-2
Devries MC, Sithamparapillai A, Brimble KS, Banfield L, Morton RW, Phillips SM (2018) Changes in kidney function do not differ between healthy adults consuming higher- compared with lower- or normal-protein diets: a systematic review and meta-analysis. J Nutr 148(11):1760–1775. https://doi.org/10.1093/jn/nxy197
Jeromson S, Gallagher IJ, Galloway SD, Hamilton DL (2015) Omega-3 fatty acids and skeletal muscle health. Mar Drugs 13(11):6977–7004. https://doi.org/10.3390/md13116977
Fritsche KL (2008) Too much linoleic acid promotes inflammation-doesn’t it? Prostaglandins Leukot Essent Fatty Acids 79(3–5):173–175. https://doi.org/10.1016/j.plefa.2008.09.019
D’Antona G, Nabavi SM, Micheletti P, Di Lorenzo A, Aquilani R, Nisoli E, Rondanelli M, Daglia M (2014) Creatine, l-carnitine, and ω3 polyunsaturated fatty acid supplementation from healthy to diseased skeletal muscle. Biomed Res Int 2014:613890. https://doi.org/10.1155/2014/613890
Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B (2011) Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci (Lond) 121(6):267–278. https://doi.org/10.1042/CS20100597
Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B (2011) Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr 93(2):402–412. https://doi.org/10.3945/ajcn.110.005611
Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B (2015) Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr 102(1):115–122. https://doi.org/10.3945/ajcn.114.105833
Rodacki CL, Rodacki AL, Pereira G, Naliwaiko K, Coelho I, Pequito D, Fernandes LC (2012) Fish-oil supplementation enhances the effects of strength training in elderly women. Am J Clin Nutr 95(2):428–436. https://doi.org/10.3945/ajcn.111.021915
Edholm P, Strandberg E, Kadi F (2017) Lower limb explosive strength capacity in elderly women: effects of resistance training and healthy diet. J Appl Physiol 123(1):190–196. https://doi.org/10.1152/japplphysiol.00924.2016
Ryan AM, Reynolds JV, Healy L, Byrne M, Moore J, Brannelly N, McHugh A, McCormack D, Flood P (2009) Enteral nutrition enriched with eicosapentaenoic acid (EPA) preserves lean body mass following esophageal cancer surgery: results of a double-blinded randomized controlled trial. Ann Surg 249(3):355–363. https://doi.org/10.1097/SLA.0b013e31819a4789
Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci 57(5):M326–M332
Kris-Etherton PM, Harris WS, Appel LJ, Committee AHAN (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106(21):2747–2757
From the Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition (2008) Interim summary of conclusions and dietary recommendations on total fat and fatty acids. Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition, Geneva
Candow DG, Forbes SC, Little JP, Cornish SM, Pinkoski C, Chilibeck PD (2012) Effect of nutritional interventions and resistance exercise on aging muscle mass and strength. Biogerontology 13(4):345–358. https://doi.org/10.1007/s10522-012-9385-4
Rundqvist HC, Esbjörnsson M, Rooyackers O, Österlund T, Moberg M, Apro W, Blomstrand E, Jansson E (2017) Influence of nutrient ingestion on amino acid transporters and protein synthesis in human skeletal muscle after sprint exercise. J Appl Physiol 123(6):1501–1515. https://doi.org/10.1152/japplphysiol.00244.2017
Børsheim E, Tipton KD, Wolf SE, Wolfe RR (2002) Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab 283(4):E648–E657. https://doi.org/10.1152/ajpendo.00466.2001
Paddon-Jones D, Sheffield-Moore M, Zhang XJ, Volpi E, Wolf SE, Aarsland A, Ferrando AA, Wolfe RR (2004) Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab 286(3):E321–E328. https://doi.org/10.1152/ajpendo.00368.2003
Dillon EL, Sheffield-Moore M, Paddon-Jones D, Gilkison C, Sanford AP, Casperson SL, Jiang J, Chinkes DL, Urban RJ (2009) Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J Clin Endocrinol Metab 94(5):1630–1637. https://doi.org/10.1210/jc.2008-1564
Wall BT, van Loon LJ (2013) Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev 71(4):195–208. https://doi.org/10.1111/nure.12019
Ferrando AA, Paddon-Jones D, Hays NP, Kortebein P, Ronsen O, Williams RH, McComb A, Symons TB, Wolfe RR, Evans W (2010) EAA supplementation to increase nitrogen intake improves muscle function during bed rest in the elderly. Clin Nutr 29(1):18–23. https://doi.org/10.1016/j.clnu.2009.03.009
Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA (2004) Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr 134(6 Suppl):1583S–1587S
Holeček M (2018) Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond) 15:33. https://doi.org/10.1186/s12986-018-0271-1
Jackman SR, Witard OC, Philp A, Wallis GA, Baar K, Tipton KD (2017) Branched-chain amino acid ingestion stimulates muscle myofibrillar protein synthesis following resistance exercise in humans. Front Physiol 8:390. https://doi.org/10.3389/fphys.2017.00390
Kobayashi H, Kato H, Hirabayashi Y, Murakami H, Suzuki H (2006) Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats. J Nutr 136(1 Suppl):234S–236S
Borgenvik M, Apró W, Blomstrand E (2012) Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. Am J Physiol Endocrinol Metab 302(5):E510–E521. https://doi.org/10.1152/ajpendo.00353.2011
Apró W, Blomstrand E (2010) Influence of supplementation with branched-chain amino acids in combination with resistance exercise on p70S6 kinase phosphorylation in resting and exercising human skeletal muscle. Acta Physiol (Oxf) 200(3):237–248. https://doi.org/10.1111/j.1748-1708.2010.02151.x
Rahimi MH, Shab-Bidar S, Mollahosseini M, Djafarian K (2017) Branched-chain amino acid supplementation and exercise-induced muscle damage in exercise recovery: a meta-analysis of randomized clinical trials. Nutrition 42:30–36. https://doi.org/10.1016/j.nut.2017.05.005
Fouré A, Bendahan D (2017) Is branched-chain amino acids supplementation an efficient nutritional strategy to alleviate skeletal muscle damage? A Systematic Review. Nutrients. https://doi.org/10.3390/nu9101047
Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ (2010) Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids 38(5):1533–1539. https://doi.org/10.1007/s00726-009-0377-x
Buse MG, Reid SS (1975) Leucine. A possible regulator of protein turnover in muscle. J Clin Invest 56(5):1250–1261. https://doi.org/10.1172/JCI108201
Bratusch-Marrain P, Waldhäusl W (1979) The influence of amino acids and somatostatin on prolactin and growth hormone release in man. Acta Endocrinol (Copenh) 90(3):403–408
Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean DA, Kimball SR, Jefferson LS (2002) Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol Endocrinol Metab 282(5):E1092–E1101. https://doi.org/10.1152/ajpendo.00208.2001
English KL, Mettler JA, Ellison JB, Mamerow MM, Arentson-Lantz E, Pattarini JM, Ploutz-Snyder R, Sheffield-Moore M, Paddon-Jones D (2016) Leucine partially protects muscle mass and function during bed rest in middle-aged adults. Am J Clin Nutr 103(2):465–473. https://doi.org/10.3945/ajcn.115.112359
Devries MC, McGlory C, Bolster DR, Kamil A, Rahn M, Harkness L, Baker SK, Phillips SM (2018) Protein leucine content is a determinant of shorter- and longer-term muscle protein synthetic responses at rest and following resistance exercise in healthy older women: a randomized, controlled trial. Am J Clin Nutr 107(2):217–226. https://doi.org/10.1093/ajcn/nqx028
Xu ZR, Tan ZJ, Zhang Q, Gui QF, Yang YM (2015) The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr 113(1):25–34. https://doi.org/10.1017/S0007114514002475
Komar B, Schwingshackl L, Hoffmann G (2015) Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: a systematic review and meta-analysis. J Nutr Health Aging 19(4):437–446. https://doi.org/10.1007/s12603-014-0559-4
Dickinson JM, Gundermann DM, Walker DK, Reidy PT, Borack MS, Drummond MJ, Arora M, Volpi E, Rasmussen BB (2014) Leucine-enriched amino acid ingestion after resistance exercise prolongs myofibrillar protein synthesis and amino acid transporter expression in older men. J Nutr 144(11):1694–1702. https://doi.org/10.3945/jn.114.198671
Ispoglou T, King RF, Polman RC, Zanker C (2011) Daily l-leucine supplementation in novice trainees during a 12-week weight training program. Int J Sports Physiol Perform 6(1):38–50
Elango R, Chapman K, Rafii M, Ball RO, Pencharz PB (2012) Determination of the tolerable upper intake level of leucine in acute dietary studies in young men. Am J Clin Nutr 96(4):759–767. https://doi.org/10.3945/ajcn.111.024471
Pasiakos SM, McClung JP (2011) Supplemental dietary leucine and the skeletal muscle anabolic response to essential amino acids. Nutr Rev 69(9):550–557. https://doi.org/10.1111/j.1753-4887.2011.00420.x
Chen L, Chen Y, Wang X, Li H, Zhang H, Gong J, Shen S, Yin W, Hu H (2015) Efficacy and safety of oral branched-chain amino acid supplementation in patients undergoing interventions for hepatocellular carcinoma: a meta-analysis. Nutr J 14:67. https://doi.org/10.1186/s12937-015-0056-6
Sandonà D, Danieli-Betto D, Germinario E, Biral D, Martinello T, Lioy A, Tarricone E, Gastaldello S, Betto R (2005) The T-tubule membrane ATP-operated P2 × 4 receptor influences contractility of skeletal muscle. FASEB J 19(9):1184–1186. https://doi.org/10.1096/fj.04-3333fje
Heinonen I, Kemppainen J, Kaskinoro K, Peltonen JE, Sipilä HT, Nuutila P, Knuuti J, Boushel R, Kalliokoski KK (2012) Effects of adenosine, exercise, and moderate acute hypoxia on energy substrate utilization of human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 302(3):R385–R390. https://doi.org/10.1152/ajpregu.00245.2011
Rådegran G, Hellsten Y (2000) Adenosine and nitric oxide in exercise-induced human skeletal muscle vasodilatation. Acta Physiol Scand 168(4):575–591. https://doi.org/10.1046/j.1365-201x.2000.00705.x
Nyberg M, Mortensen SP, Thaning P, Saltin B, Hellsten Y (2010) Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle. Hypertension 56(6):1102–1108. https://doi.org/10.1161/HYPERTENSIONAHA.110.161521
Jäger R, Roberts MD, Lowery RP, Joy JM, Cruthirds CL, Lockwood CM, Rathmacher JA, Purpura M, Wilson JM (2014) Oral adenosine-5′-triphosphate (ATP) administration increases blood flow following exercise in animals and humans. J Int Soc Sports Nutr 11:28. https://doi.org/10.1186/1550-2783-11-28
Jordan AN, Jurca R, Abraham EH, Salikhova A, Mann JK, Morss GM, Church TS, Lucia A, Earnest CP (2004) Effects of oral ATP supplementation on anaerobic power and muscular strength. Med Sci Sports Exerc 36(6):983–990
Freitas MC, Cholewa JM, Gerosa-Neto J, Gonçalves DC, Caperuto EC, Lira FS, Rossi FE (2017) A single dose of oral atp supplementation improves performance and physiological response during lower body resistance exercise in recreational resistance trained males. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000002198
Purpura M, Rathmacher JA, Sharp MH, Lowery RP, Shields KA, Partl JM, Wilson JM, Jäger R (2017) Oral Adenosine-5′-triphosphate (ATP) administration increases postexercise ATP levels, muscle excitability, and athletic performance following a repeated sprint bout. J Am Coll Nutr 36(3):177–183. https://doi.org/10.1080/07315724.2016.1246989
Rathmacher JA, Fuller JC, Baier SM, Abumrad NN, Angus HF, Sharp RL (2012) Adenosine-5′-triphosphate (ATP) supplementation improves low peak muscle torque and torque fatigue during repeated high intensity exercise sets. J Int Soc Sports Nutr 9(1):48. https://doi.org/10.1186/1550-2783-9-48
Wilson JM, Joy JM, Lowery RP, Roberts MD, Lockwood CM, Manninen AH, Fuller JC, De Souza EO, Baier SM, Wilson SM, Rathmacher JA (2013) Effects of oral adenosine-5′-triphosphate supplementation on athletic performance, skeletal muscle hypertrophy and recovery in resistance-trained men. Nutr Metab (Lond) 10(1):57. https://doi.org/10.1186/1743-7075-10-57
Coolen EJ, Arts IC, Bekers O, Vervaet C, Bast A, Dagnelie PC (2011) Oral bioavailability of ATP after prolonged administration. Br J Nutr 105(3):357–366. https://doi.org/10.1017/S0007114510003570
Rådegran G, Calbet JA (2001) Role of adenosine in exercise-induced human skeletal muscle vasodilatation. Acta Physiol Scand 171(2):177–185. https://doi.org/10.1046/j.1365-201x.2001.00796.x
Arts IC, Coolen EJ, Bours MJ, Huyghebaert N, Stuart MA, Bast A, Dagnelie PC (2012) Adenosine 5′-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans. J Int Soc Sports Nutr 9(1):16. https://doi.org/10.1186/1550-2783-9-16
Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Bénazeth S, Cynober L (2005) Almost all about citrulline in mammals. Amino acids 29(3):177–205. https://doi.org/10.1007/s00726-005-0235-4
Thibault R, Flet L, Vavasseur F, Lemerle M, Ferchaud-Roucher V, Picot D, Darmaun D (2011) Oral citrulline does not affect whole body protein metabolism in healthy human volunteers: results of a prospective, randomized, double-blind, cross-over study. Clin Nutr 30(6):807–811. https://doi.org/10.1016/j.clnu.2011.06.005
Bailey SJ, Blackwell JR, Lord T, Vanhatalo A, Winyard PG, Jones AM (2015) l-Citrulline supplementation improves O2 uptake kinetics and high-intensity exercise performance in humans. J Appl Physiol 119(4):385–395. https://doi.org/10.1152/japplphysiol.00192.2014
van Wijck K, Wijnands KA, Meesters DM, Boonen B, van Loon LJ, Buurman WA, Dejong CH, Lenaerts K, Poeze M (2014) l-citrulline improves splanchnic perfusion and reduces gut injury during exercise. Med Sci Sports Exerc 46(11):2039–2046. https://doi.org/10.1249/MSS.0000000000000332
Moinard C, Cynober L (2007) Citrulline: a new player in the control of nitrogen homeostasis. J Nutr 137(6 Suppl 2):1621S–1625S. https://doi.org/10.1093/jn/137.6.1621S
Ham DJ, Caldow MK, Lynch GS, Koopman R (2014) Arginine protects muscle cells from wasting in vitro in an mTORC1-dependent and NO-independent manner. Amino Acids 46(12):2643–2652. https://doi.org/10.1007/s00726-014-1815-y
Bouillanne O, Melchior JC, Faure C, Paul M, Canouï-Poitrine F, Boirie Y, Chevenne D, Forasassi C, Guery E, Herbaud S, Le Corvoisier P, Neveux N, Nivet-Antoine V, Astier A, Raynaud-Simon A, Walrand S, Cynober L, Aussel C (2018) Impact of 3-week citrulline supplementation on postprandial protein metabolism in malnourished older patients: the Ciproage randomized controlled trial. Clin Nutr. https://doi.org/10.1016/j.clnu.2018.02.017
Moinard C, Nicolis I, Neveux N, Darquy S, Bénazeth S, Cynober L (2008) Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the Citrudose pharmacokinetic study. Br J Nutr 99(4):855–862. https://doi.org/10.1017/S0007114507841110
Hickner RC, Tanner CJ, Evans CA, Clark PD, Haddock A, Fortune C, Geddis H, Waugh W, McCammon M (2006) l-citrulline reduces time to exhaustion and insulin response to a graded exercise test. Med Sci Sports Exerc 38(4):660–666. https://doi.org/10.1249/01.mss.0000210197.02576.da
Glenn JM, Gray M, Jensen A, Stone MS, Vincenzo JL (2016) Acute citrulline-malate supplementation improves maximal strength and anaerobic power in female, masters athletes tennis players. Eur J Sport Sci 16(8):1095–1103. https://doi.org/10.1080/17461391.2016.1158321
Glenn JM, Gray M, Wethington LN, Stone MS, Stewart RW, Moyen NE (2017) Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. Eur J Nutr 56(2):775–784. https://doi.org/10.1007/s00394-015-1124-6
Pérez-Guisado J, Jakeman PM (2010) Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J Strength Cond Res 24(5):1215–1222. https://doi.org/10.1519/JSC.0b013e3181cb28e0
Wax B, Kavazis AN, Weldon K, Sperlak J (2015) Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weightlifters. J Strength Cond Res 29(3):786–792. https://doi.org/10.1519/JSC.0000000000000670
Cutrufello PT, Gadomski SJ, Zavorsky GS (2015) The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J Sports Sci 33(14):1459–1466. https://doi.org/10.1080/02640414.2014.990495
Hwang P, Morales Marroquín FE, Gann J, Andre T, McKinley-Barnard S, Kim C, Morita M, Willoughby DS (2018) Eight weeks of resistance training in conjunction with glutathione and l-Citrulline supplementation increases lean mass and has no adverse effects on blood clinical safety markers in resistance-trained males. J Int Soc Sports Nutr 15(1):30. https://doi.org/10.1186/s12970-018-0235-x
Clarkson PM, Rawson ES (1999) Nutritional supplements to increase muscle mass. Crit Rev Food Sci Nutr 39(4):317–328. https://doi.org/10.1080/10408699991279196
Van Koevering M, Nissen S (1992) Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo. Am J Physiol 262(1 Pt 1):E27–E31
Wu H, Xia Y, Jiang J, Du H, Guo X, Liu X, Li C, Huang G, Niu K (2015) Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr 61(2):168–175. https://doi.org/10.1016/j.archger.2015.06.020
Deutz NE, Pereira SL, Hays NP, Oliver JS, Edens NK, Evans CM, Wolfe RR (2013) Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin Nutr 32(5):704–712. https://doi.org/10.1016/j.clnu.2013.02.011
Vukovich MD, Stubbs NB, Bohlken RM (2001) Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methylbutyrate similarly to that of young adults. J Nutr 131(7):2049–2052
Rowlands DS, Thomson JS (2009) Effects of beta-hydroxy-beta-methylbutyrate supplementation during resistance training on strength, body composition, and muscle damage in trained and untrained young men: a meta-analysis. J Strength Cond Res 23(3):836–846. https://doi.org/10.1519/JSC.0b013e3181a00c80
Sanchez-Martinez J, Santos-Lozano A, Garcia-Hermoso A, Sadarangani KP, Cristi-Montero C (2018) Effects of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in trained and competitive athletes: a meta-analysis of randomized controlled trials. J Sci Med Sport 21(7):727–735. https://doi.org/10.1016/j.jsams.2017.11.003
Townsend JR, Hoffman JR, Gonzalez AM, Jajtner AR, Boone CH, Robinson EH, Mangine GT, Wells AJ, Fragala MS, Fukuda DH, Stout JR (2015) Effects of β-Hydroxy-β-methylbutyrate free acid ingestion and resistance exercise on the acute endocrine response. Int J Endocrinol 2015:856708. https://doi.org/10.1155/2015/856708
Teixeira FJ, Matias CN, Monteiro CP, Valamatos MJ, Reis J, Tavares F, Batista A, Domingos C, Alves F, Sardinha LB, Phillips SM (2018) Leucine metabolites do not enhance training-induced performance or muscle thickness. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0000000000001754
Portal S, Zadik Z, Rabinowitz J, Pilz-Burstein R, Adler-Portal D, Meckel Y, Cooper DM, Eliakim A, Nemet D (2011) The effect of HMB supplementation on body composition, fitness, hormonal and inflammatory mediators in elite adolescent volleyball players: a prospective randomized, double-blind, placebo-controlled study. Eur J Appl Physiol 111(9):2261–2269. https://doi.org/10.1007/s00421-011-1855-x
Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, Wilborn C, Kalman DS, Stout JR, Hoffman JR, Ziegenfuss TN, Lopez HL, Kreider RB, Smith-Ryan AE, Antonio J (2013) International society of sports nutrition position stand: beta-hydroxy-beta-methylbutyrate (HMB). J Int Soc Sports Nutr 10(1):6. https://doi.org/10.1186/1550-2783-10-6
Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, Loughna P, Churchward-Venne TA, Breen L, Phillips SM, Etheridge T, Rathmacher JA, Smith K, Szewczyk NJ, Atherton PJ (2013) Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J Physiol 591(11):2911–2923. https://doi.org/10.1113/jphysiol.2013.253203
Borack MS, Volpi E (2016) Efficacy and safety of leucine supplementation in the elderly. J Nutr 146(12):2625S–2629S. https://doi.org/10.3945/jn.116.230771
Lukaski HC (2000) Magnesium, zinc, and chromium nutriture and physical activity. Am J Clin Nutr 72(2 Suppl):585S–593S
Ford ES, Mokdad AH (2003) Dietary magnesium intake in a national sample of US adults. J Nutr 133(9):2879–2882
de Sousa EF, Da Costa TH, Nogueira JA, Vivaldi LJ (2008) Assessment of nutrient and water intake among adolescents from sports federations in the Federal District, Brazil. Br J Nutr 99(6):1275–1283. https://doi.org/10.1017/S0007114507864841
Mertens E, Kuijsten A, Dofková M, Mistura L, D’Addezio L, Turrini A, Dubuisson C, Favret S, Havard S, Trolle E, Van’t Veer P, Geleijnse JM (2018) Geographic and socioeconomic diversity of food and nutrient intakes: a comparison of four European countries. Eur J Nutr. https://doi.org/10.1007/s00394-018-1673-6
Olza J, Aranceta-Bartrina J, González-Gross M, Ortega RM, Serra-Majem L, Varela-Moreiras G, Gil Á (2017) Reported dietary intake, disparity between the reported consumption and the level needed for adequacy and food sources of calcium, phosphorus, magnesium and vitamin d in the spanish population: findings from the ANIBES study. Nutrients 9 (2). https://doi.org/10.3390/nu9020168
Wardenaar F, Brinkmans N, Ceelen I, Van Rooij B, Mensink M, Witkamp R, De Vries J (2017) Micronutrient intakes in 553 Dutch elite and sub-elite athletes: prevalence of low and high intakes in users and non-users of nutritional supplements. Nutrients. https://doi.org/10.3390/nu9020142
van Dronkelaar C, van Velzen A, Abdelrazek M, van der Steen A, Weijs PJM, Tieland M (2018) Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review. J Am Med Dir Assoc 19(1):6–11.e13. https://doi.org/10.1016/j.jamda.2017.05.026
Musso CG (2009) Magnesium metabolism in health and disease. Int Urol Nephrol 41(2):357–362. https://doi.org/10.1007/s11255-009-9548-7
Zhang Y, Xun P, Wang R, Mao L, He K (2017) Can magnesium enhance exercise performance?. Nutrients. https://doi.org/10.3390/nu9090946
Maggio M, De Vita F, Lauretani F, Nouvenne A, Meschi T, Ticinesi A, Dominguez LJ, Barbagallo M, Dall’aglio E, Ceda GP (2014) The interplay between magnesium and testosterone in modulating physical function in men. Int J Endocrinol 2014:525249. https://doi.org/10.1155/2014/525249
Dominguez LJ, Barbagallo M, Lauretani F, Bandinelli S, Bos A, Corsi AM, Simonsick EM, Ferrucci L (2006) Magnesium and muscle performance in older persons: the InCHIANTI study. Am J Clin Nutr 84(2):419–426
Scott D, Blizzard L, Fell J, Giles G, Jones G (2010) Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian Older Adult Cohort Study. J Am Geriatr Soc 58(11):2129–2134. https://doi.org/10.1111/j.1532-5415.2010.03147.x
Lukaski HC, Nielsen FH (2002) Dietary magnesium depletion affects metabolic responses during submaximal exercise in postmenopausal women. J Nutr 132(5):930–935
Santos DA, Matias CN, Monteiro CP, Silva AM, Rocha PM, Minderico CS, Bettencourt Sardinha L, Laires MJ (2011) Magnesium intake is associated with strength performance in elite basketball, handball and volleyball players. Magnes Res 24(4):215–219. https://doi.org/10.1684/mrh.2011.0290
Brilla LR, Haley TF (1992) Effect of magnesium supplementation on strength training in humans. J Am Coll Nutr 11(3):326–329
Kass LS, Poeira F (2015) The effect of acute vs chronic magnesium supplementation on exercise and recovery on resistance exercise, blood pressure and total peripheral resistance on normotensive adults. J Int Soc Sports Nutr 12:19. https://doi.org/10.1186/s12970-015-0081-z
Newhouse IJ, Finstad EW (2000) The effects of magnesium supplementation on exercise performance. Clin J Sport Med 10(3):195–200
Moslehi N, Vafa M, Sarrafzadeh J, Rahimi-Foroushani A (2013) Does magnesium supplementation improve body composition and muscle strength in middle-aged overweight women? A double-blind, placebo-controlled, randomized clinical trial. Biol Trace Elem Res 153(1–3):111–118. https://doi.org/10.1007/s12011-013-9672-1
Wang R, Chen C, Liu W, Zhou T, Xun P, He K, Chen P (2017) The effect of magnesium supplementation on muscle fitness: a meta-analysis and systematic review. Magnes Res 30(4):120–132. https://doi.org/10.1684/mrh.2018.0430
Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118
Prasad AS, Mantzoros CS, Beck FW, Hess JW, Brewer GJ (1996) Zinc status and serum testosterone levels of healthy adults. Nutrition 12(5):344–348
Prasad AS (2014) Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Front Nutr 1:14. https://doi.org/10.3389/fnut.2014.00014
Van Loan MD, Sutherland B, Lowe NM, Turnlund JR, King JC (1999) The effects of zinc depletion on peak force and total work of knee and shoulder extensor and flexor muscles. Int J Sport Nutr 9(2):125–135
Krotkiewski M, Gudmundsson M, Backström P, Mandroukas K (1982) Zinc and muscle strength and endurance. Acta Physiol Scand 116(3):309–311. https://doi.org/10.1111/j.1748-1716.1982.tb07146.x
Ghavami-Maibodi SZ, Collipp PJ, Castro-Magana M, Stewart C, Chen SY (1983) Effect of oral zinc supplements on growth, hormonal levels, and zinc in healthy short children. Ann Nutr Metab 27(3):214–219
Neek LS, Gaeini AA, Choobineh S (2011) Effect of zinc and selenium supplementation on serum testosterone and plasma lactate in cyclist after an exhaustive exercise bout. Biol Trace Elem Res 144(1–3):454–462
Gunanti IR, Al-Mamun A, Schubert L, Long KZ (2016) The effect of zinc supplementation on body composition and hormone levels related to adiposity among children: a systematic review. Public Health Nutr 19(16):2924–2939. https://doi.org/10.1017/S1368980016001154
Vincent JB (1999) Mechanisms of chromium action: low-molecular-weight chromium-binding substance. J Am Coll Nutr 18(1):6–12
Hasten DL, Rome EP, Franks BD, Hegsted M (1992) Effects of chromium picolinate on beginning weight training students. Int J Sport Nutr 2(4):343–350
Lukaski HC, Bolonchuk WW, Siders WA, Milne DB (1996) Chromium supplementation and resistance training: effects on body composition, strength, and trace element status of men. Am J Clin Nutr 63(6):954–965
Volpe SL, Huang HW, Larpadisorn K, Lesser II (2001) Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. J Am Coll Nutr 20(4):293–306
Clancy SP, Clarkson PM, DeCheke ME, Nosaka K, Freedson PS, Cunningham JJ, Valentine B (1994) Effects of chromium picolinate supplementation on body composition, strength, and urinary chromium loss in football players. Int J Sport Nutr 4(2):142–153
Campbell WW, Joseph LJ, Davey SL, Cyr-Campbell D, Anderson RA, Evans WJ (1999) Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older men. J Appl Physiol 86(1):29–39
Lukaski HC (2004) Vitamin and mineral status: effects on physical performance. Nutrition 20(7–8):632–644. https://doi.org/10.1016/j.nut.2004.04.001
Williams MH (2005) Dietary supplements and sports performance: minerals. J Int Soc Sports Nutr 2:43–49. https://doi.org/10.1186/1550-2783-2-1-43
Reginster JY (2005) The high prevalence of inadequate serum vitamin D levels and implications for bone health. Curr Med Res Opin 21(4):579–586. https://doi.org/10.1185/030079905X41435
Montero-Odasso M, Duque G (2005) Vitamin D in the aging musculoskeletal system: an authentic strength preserving hormone. Mol Aspects Med 26(3):203–219. https://doi.org/10.1016/j.mam.2005.01.005
Vitale G, Cesari M, Mari D (2016) Aging of the endocrine system and its potential impact on sarcopenia. Eur J Intern Med 35:10–15. https://doi.org/10.1016/j.ejim.2016.07.017
Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 dietary reference intakes for calcium and vitamin D: what dietetics practitioners need to know. J Am Diet Assoc 111(4):524–527. https://doi.org/10.1016/j.jada.2011.01.004
Verlaan S, Maier AB, Bauer JM, Bautmans I, Brandt K, Donini LM, Maggio M, McMurdo ME, Mets T, Seal C, Wijers SL, Sieber C, Boirie Y, Cederholm T (2017) Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults—the PROVIDE study. Clin Nutr. https://doi.org/10.1016/j.clnu.2017.01.005
Buta B, Choudhury PP, Xue QL, Chaves P, Bandeen-Roche K, Shardell M, Semba RD, Walston J, Michos ED, Appel LJ, McAdams-DeMarco M, Gross A, Yasar S, Ferrucci L, Fried LP, Kalyani RR (2016) The association of vitamin D deficiency and incident frailty in older women: the role of cardiometabolic diseases. J Am Geriatr Soc. https://doi.org/10.1111/jgs.14677
Fuller JC, Baier S, Flakoll P, Nissen SL, Abumrad NN, Rathmacher JA (2011) Vitamin D status affects strength gains in older adults supplemented with a combination of β-hydroxy-β-methylbutyrate, arginine, and lysine: a cohort study. J Parenter Enteral Nutr 35(6):757–762. https://doi.org/10.1177/0148607111413903
Muir SW, Montero-Odasso M (2011) Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 59(12):2291–2300. https://doi.org/10.1111/j.1532-5415.2011.03733.x
Tomlinson PB, Joseph C, Angioi M (2015) Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J Sci Med Sport 18(5):575–580. https://doi.org/10.1016/j.jsams.2014.07.022
Farrokhyar F, Sivakumar G, Savage K, Koziarz A, Jamshidi S, Ayeni OR, Peterson D, Bhandari M (2017) Effects of Vitamin D supplementation on serum 25-hydroxyvitamin D concentrations and physical performance in athletes: a systematic review and meta-analysis of randomized controlled trials. Sports Med. https://doi.org/10.1007/s40279-017-0749-4
Rosendahl-Riise H, Spielau U, Ranhoff AH, Gudbrandsen OA, Dierkes J (2017) Vitamin D supplementation and its influence on muscle strength and mobility in community-dwelling older persons: a systematic review and meta-analysis. J Hum Nutr Diet 30(1):3–15. https://doi.org/10.1111/jhn.12394
Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL (2011) Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int 22 (3):859–871. https://doi.org/10.1007/s00198-010-1407-y
Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, Petermans J, Reginster JY, Bruyère O (2014) The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 99(11):4336–4345. https://doi.org/10.1210/jc.2014-1742
Agergaard J, Trøstrup J, Uth J, Iversen JV, Boesen A, Andersen JL, Schjerling P, Langberg H (2015) Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men?—a randomized controlled trial. Nutr Metab (Lond) 12:32. https://doi.org/10.1186/s12986-015-0029-y
Antoniak AE, Greig CA (2017) The effect of combined resistance exercise training and vitamin D. BMJ Open 7(7):e014619. https://doi.org/10.1136/bmjopen-2016-014619
Makanae Y, Kawada S, Sasaki K, Nakazato K, Ishii N (2013) Vitamin C administration attenuates overload-induced skeletal muscle hypertrophy in rats. Acta Physiol (Oxf) 208(1):57–65. https://doi.org/10.1111/apha.12042
Paulsen G, Hamarsland H, Cumming KT, Johansen RE, Hulmi JJ, Børsheim E, Wiig H, Garthe I, Raastad T (2014) Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. J Physiol 592(24):5391–5408. https://doi.org/10.1113/jphysiol.2014.279950
Bjørnsen T, Salvesen S, Berntsen S, Hetlelid KJ, Stea TH, Lohne-Seiler H, Rohde G, Haraldstad K, Raastad T, Køpp U, Haugeberg G, Mansoor MA, Bastani NE, Blomhoff R, Stølevik SB, Seynnes OR, Paulsen G (2016) Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scand J Med Sci Sports 26(7):755–763. https://doi.org/10.1111/sms.12506
Stunes AK, Syversen U, Berntsen S, Paulsen G, Stea TH, Hetlelid KJ, Lohne-Seiler H, Mosti MP, Bjørnsen T, Raastad T, Haugeberg G (2017) High doses of vitamin C plus E reduce strength training-induced improvements in areal bone mineral density in elderly men. Eur J Appl Physiol 117(6):1073–1084. https://doi.org/10.1007/s00421-017-3588-y
Bobeuf F, Labonte M, Dionne IJ, Khalil A (2011) Combined effect of antioxidant supplementation and resistance training on oxidative stress markers, muscle and body composition in an elderly population. J Nutr Health Aging 15(10):883–889
Labonté M, Dionne IJ, Bouchard DR, Sénéchal M, Tessier D, Khalil A, Bobeuf F (2008) Effects of antioxidant supplements combined with resistance exercise on gains in fat-free mass in healthy elderly subjects: a pilot study. J Am Geriatr Soc 56(9):1766–1768. https://doi.org/10.1111/j.1532-5415.2008.01810.x
Minisola S, Cianferotti L, Biondi P, Cipriani C, Fossi C, Franceschelli F, Giusti F, Leoncini G, Pepe J, Bischoff-Ferrari HA, Brandi ML (2017) Correction of vitamin D status by calcidiol: pharmacokinetic profile, safety, and biochemical effects on bone and mineral metabolism of daily and weekly dosage regimens. Osteoporos Int 28 (11):3239–3249. https://doi.org/10.1007/s00198-017-4180-3
Hamishehkar H, Ranjdoost F, Asgharian P, Mahmoodpoor A, Sanaie S (2016) Vitamins, are they safe? Adv Pharm Bull 6(4):467–477. https://doi.org/10.15171/apb.2016.061
Bond P (2017) Phosphatidic acid: biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals. Nutr Metab (Lond) 14:12. https://doi.org/10.1186/s12986-017-0166-6
Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294(5548):1942–1945. https://doi.org/10.1126/science.1066015
Mobley CB, Hornberger TA, Fox CD, Healy JC, Ferguson BS, Lowery RP, McNally RM, Lockwood CM, Stout JR, Kavazis AN, Wilson JM, Roberts MD (2015) Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle. J Int Soc Sports Nutr 12:32. https://doi.org/10.1186/s12970-015-0094-7
Gonzalez AM, Sell KM, Ghigiarelli JJ, Kelly CF, Shone EW, Accetta MR, Baum JB, Mangine GT (2017) Effects of phosphatidic acid supplementation on muscle thickness and strength in resistance-trained men. Appl Physiol Nutr Metab 42 (4):443–448. https://doi.org/10.1139/apnm-2016-0564
Shad BJ, Smeuninx B, Atherton PJ, Breen L (2015) The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle. Appl Physiol Nutr Metab 40 (12):1233–1241. https://doi.org/10.1139/apnm-2015-0350
Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, Purpura M, Jäger R (2012) Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. J Int Soc Sports Nutr 9(1):47. https://doi.org/10.1186/1550-2783-9-47
Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM (2014) Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. Nutr Metab (Lond) 11:29. https://doi.org/10.1186/1743-7075-11-29
Andre TL, Gann JJ, McKinley-Barnard SK, Song JJ, Willoughby DS (2016) eight weeks of phosphatidic acid supplementation in conjunction with resistance training does not differentially affect body composition and muscle strength in resistance-trained men. J Sports Sci Med 15(3):532–539
Campbell BI, La Bounty PM, Roberts M (2004) The ergogenic potential of arginine. J Int Soc Sports Nutr 1(2):35–38. https://doi.org/10.1186/1550-2783-1-2-35
Castillo L, Ajami A, Branch S, Chapman TE, Yu YM, Burke JF, Young VR (1994) Plasma arginine kinetics in adult man: response to an arginine-free diet. Metabolism 43(1):114–122
Wideman L, Weltman JY, Patrie JT, Bowers CY, Shah N, Story S, Weltman A, Veldhuis JD (2000) Synergy of L-arginine and growth hormone (GH)-releasing peptide-2 on GH release: influence of gender. Am J Physiol Regul Integr Comp Physiol 279(4):R1455–R1466
Wideman L, Weltman JY, Patrie JT, Bowers CY, Shah N, Story S, Veldhuis JD, Weltman A (2000) Synergy of l-arginine and GHRP-2 stimulation of growth hormone in men and women: modulation by exercise. Am J Physiol Regul Integr Comp Physiol 279(4):R1467–R1477
Chromiak JA, Antonio J (2002) Use of amino acids as growth hormone-releasing agents by athletes. Nutrition 18(7–8):657–661
Collier SR, Collins E, Kanaley JA (2006) Oral arginine attenuates the growth hormone response to resistance exercise. J Appl Physiol (1985) 101(3):848–852. https://doi.org/10.1152/japplphysiol.00285.2006
Isidori A, Lo Monaco A, Cappa M (1981) A study of growth hormone release in man after oral administration of amino acids. Curr Med Res Opin 7(7):475–481. https://doi.org/10.1185/03007998109114287
Walberg-Rankin J, Hawkins CE, Fild DS, Sebolt DR (1994) The effect of oral arginine during energy restriction in male weight trainers. J Strength Cond Res 8(3):170–177
Forbes SC, Bell GJ (2011) The acute effects of a low and high dose of oral l-arginine supplementation in young active males at rest. Appl Physiol Nutr Metab 36 (3):405–411. https://doi.org/10.1139/h11-035
Blum A, Cannon RO, Costello R, Schenke WH, Csako G (2000) Endocrine and lipid effects of oral L-arginine treatment in healthy postmenopausal women. J Lab Clin Med 135(3):231–237. https://doi.org/10.1067/mlc.2000.104909
Angeli G, Barros TLD, Barros DFLD, Lima M (2007) Investigation of the effects of oral supplementation of arginine in the increase of muscular strength and mass. Revista Brasileira de Medicina do Esporte 13(2):129–132
Pahlavani N, Entezari MH, Nasiri M, Miri A, Rezaie M, Bagheri-Bidakhavidi M, Sadeghi O (2017) The effect of l-arginine supplementation on body composition and performance in male athletes: a double-blinded randomized clinical trial. Eur J Clin Nutr 71(4):544–548. https://doi.org/10.1038/ejcn.2016.266
Chilosi A, Casarano M, Comparini A, Battaglia FM, Mancardi MM, Schiaffino C, Tosetti M, Leuzzi V, Battini R, Cioni G (2012) Neuropsychological profile and clinical effects of arginine treatment in children with creatine transport deficiency. Orphanet J Rare Dis 7:43. https://doi.org/10.1186/1750-1172-7-43
Valayannopoulos V, Boddaert N, Chabli A, Barbier V, Desguerre I, Philippe A, Afenjar A, Mazzuca M, Cheillan D, Munnich A, de Keyzer Y, Jakobs C, Salomons GS, de Lonlay P (2012) Treatment by oral creatine, l-arginine and l-glycine in six severely affected patients with creatine transporter defect. J Inherit Metab Dis 35(1):151–157. https://doi.org/10.1007/s10545-011-9358-9
Alvares TS, Conte-Junior CA, Silva JT, Paschoalin VM (2012) Acute l-Arginine supplementation does not increase nitric oxide production in healthy subjects. Nutr Metab (Lond) 9(1):54. https://doi.org/10.1186/1743-7075-9-54
Alvares TS, Conte CA, Paschoalin VM, Silva JT, Meirelles CeM, Bhambhani YN, Gomes PS (2012) Acute l-arginine supplementation increases muscle blood volume but not strength performance. Appl Physiol Nutr Metab 37 (1):115–126. https://doi.org/10.1139/h11-144
Álvares TS, Meirelles CM, Bhambhani YN, Paschoalin VM, Gomes PS (2011) l-Arginine as a potential ergogenic aid in healthy subjects. Sports Med 41(3):233–248. https://doi.org/10.2165/11538590-000000000-00000
Pariza MW, Park Y, Cook ME (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40(4):283–298
Pinkoski C, Chilibeck PD, Candow DG, Esliger D, Ewaschuk JB, Facci M, Farthing JP, Zello GA (2006) The effects of conjugated linoleic acid supplementation during resistance training. Med Sci Sports Exerc 38(2):339–348. https://doi.org/10.1249/01.mss.0000183860.42853.15
Tarnopolsky M, Zimmer A, Paikin J, Safdar A, Aboud A, Pearce E, Roy B, Doherty T (2007) Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One 2(10):e991. https://doi.org/10.1371/journal.pone.0000991
Kreider RB, Ferreira MP, Greenwood M, Wilson M, Almada AL (2002) Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers. J Strength Cond Res 16(3):325–334
Song HJ, Grant I, Rotondo D, Mohede I, Sattar N, Heys SD, Wahle KW (2005) Effect of CLA supplementation on immune function in young healthy volunteers. Eur J Clin Nutr 59(4):508–517. https://doi.org/10.1038/sj.ejcn.1602102
Curi R, Newsholme P, Procopio J, Lagranha C, Gorjão R, Pithon-Curi TC (2007) Glutamine, gene expression, and cell function. Front Biosci 12:344–357
Wu G, Wu Z, Dai Z, Yang Y, Wang W, Liu C, Wang B, Wang J, Yin Y (2013) Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino acids 44(4):1107–1113. https://doi.org/10.1007/s00726-012-1444-2
Wernerman J (2008) Clinical use of glutamine supplementation. J Nutr 138 (10): 2040S–2044S
Novak F, Heyland DK, Avenell A, Drover JW, Su X (2002) Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 30(9):2022–2029. https://doi.org/10.1097/01.CCM.0000026106.58241.95
Hammarqvist F, Wernerman J, Ali R, von der Decken A, Vinnars E (1989) Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Ann Surg 209(4):455–461
Stehle P, Zander J, Mertes N, Albers S, Puchstein C, Lawin P, Fürst P (1989) Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet 1(8632):231–233
Mok E, Eléouet-Da Violante C, Daubrosse C, Gottrand F, Rigal O, Fontan JE, Cuisset JM, Guilhot J, Hankard R (2006) Oral glutamine and amino acid supplementation inhibit whole-body protein degradation in children with Duchenne muscular dystrophy. Am J Clin Nutr 83(4):823–828
Antonio J, Sanders MS, Kalman D, Woodgate D, Street C (2002) The effects of high-dose glutamine ingestion on weightlifting performance. J Strength Cond Res 16(1):157–160
Candow DG, Chilibeck PD, Burke DG, Davison KS, Smith-Palmer T (2001) Effect of glutamine supplementation combined with resistance training in young adults. Eur J Appl Physiol 86(2):142–149. https://doi.org/10.1007/s00421-001-0523-y
Ramezani Ahmadi A, Rayyani E, Bahreini M, Mansoori A (2018) The effect of glutamine supplementation on athletic performance, body composition, and immune function: a systematic review and a meta-analysis of clinical trials. Clin Nutr. https://doi.org/10.1016/j.clnu.2018.05.001
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P (2018) Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients. https://doi.org/10.3390/nu10111564
Gleeson M (2008) Dosing and efficacy of glutamine supplementation in human exercise and sport training. J Nutr 138(10):2045S–2049S
Lin Y, Chen F, Zhang J, Wang T, Wei X, Wu J, Feng Y, Dai Z, Wu Q (2013) Neuroprotective effect of resveratrol on ischemia/reperfusion injury in rats through TRPC6/CREB pathways. J Mol Neurosci 50(3):504–513. https://doi.org/10.1007/s12031-013-9977-8
Mattison JA, Wang M, Bernier M, Zhang J, Park SS, Maudsley S, An SS, Santhanam L, Martin B, Faulkner S, Morrell C, Baur JA, Peshkin L, Sosnowska D, Csiszar A, Herbert RL, Tilmont EM, Ungvari Z, Pearson KJ, Lakatta EG, de Cabo R (2014) Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab 20(1):183–190. https://doi.org/10.1016/j.cmet.2014.04.018
Wong RH, Howe PR, Buckley JD, Coates AM, Kunz I, Berry NM (2011) Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure. Nutr Metab Cardiovasc Dis 21(11):851–856. https://doi.org/10.1016/j.numecd.2010.03.003
Dutt V, Gupta S, Dabur R, Injeti E, Mittal A (2015) Skeletal muscle atrophy: potential therapeutic agents and their mechanisms of action. Pharmacol Res 99:86–100. https://doi.org/10.1016/j.phrs.2015.05.010
Rathbone CR, Booth FW, Lees SJ (2009) Sirt1 increases skeletal muscle precursor cell proliferation. Eur J Cell Biol 88(1):35–44. https://doi.org/10.1016/j.ejcb.2008.08.003
Bennett BT, Mohamed JS, Alway SE (2013) Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats. PLoS One 8(12):e83518. https://doi.org/10.1371/journal.pone.0083518
Jackson JR, Ryan MJ, Alway SE (2011) Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged mice. J Gerontol A Biol Sci Med Sci 66(7):751–764. https://doi.org/10.1093/gerona/glr047
Ballak SB, Jaspers RT, Deldicque L, Chalil S, Peters EL, de Haan A, Degens H (2015) Blunted hypertrophic response in old mouse muscle is associated with a lower satellite cell density and is not alleviated by resveratrol. Exp Gerontol 62:23–31. https://doi.org/10.1016/j.exger.2014.12.020
Alway SE, McCrory JL, Kearcher K, Vickers A, Frear B, Gilleland DL, Bonner DE, Thomas JM, Donley DA, Lively MW, Mohamed JS (2017) Resveratrol enhances exercise-induced cellular and functional adaptations of skeletal muscle in older men and women. J Gerontol A Biol Sci Med Sci. https://doi.org/10.1093/gerona/glx089
Katashima CK, Silva VR, Gomes TL, Pichard C, Pimentel GD (2017) Ursolic acid and mechanisms of actions on adipose and muscle tissue: a systematic review. Obes Rev 18(6):700–711. https://doi.org/10.1111/obr.12523
Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM (2011) mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab 13(6):627–638. https://doi.org/10.1016/j.cmet.2011.03.020
Kunkel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC, Bullard SA, Adams CM (2012) Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PLoS One 7(6):e39332. https://doi.org/10.1371/journal.pone.0039332
Cho YH, Lee SY, Kim CM, Kim ND, Choe S, Lee CH, Shin JH (2016) Effect of loquat leaf extract on muscle strength, muscle mass, and muscle function in healthy adults: a randomized, double-blinded, and placebo-controlled trial. Evid Based Complement Alternat Med 2016:4301621. https://doi.org/10.1155/2016/4301621
Church DD, Schwarz NA, Spillane MB, McKinley-Barnard SK, Andre TL, Ramirez AJ, Willoughby DS (2016) l-Leucine increases skeletal muscle IGF-1 but does not differentially increase Akt/mTORC1 signaling and serum IGF-1 compared to ursolic acid in response to resistance exercise in resistance-trained men. J Am Coll Nutr 35(7):627–638. https://doi.org/10.1080/07315724.2015.1132019
Bang HS, Seo DY, Chung YM, Oh KM, Park JJ, Arturo F, Jeong SH, Kim N, Han J (2014) Ursolic Acid-induced elevation of serum irisin augments muscle strength during resistance training in men. Korean J Physiol Pharmacol 18(5):441–446. https://doi.org/10.4196/kjpp.2014.18.5.441
Qureshi A, Naughton DP, Petroczi A (2014) A systematic review on the herbal extract Tribulus terrestris and the roots of its putative aphrodisiac and performance enhancing effect. J Diet Suppl 11(1):64–79. https://doi.org/10.3109/19390211.2014.887602
Neychev VK, Mitev VI (2005) The aphrodisiac herb Tribulus terrestris does not influence the androgen production in young men. J Ethnopharmacol 101(1–3):319–323. https://doi.org/10.1016/j.jep.2005.05.017
Ma Y, Guo Z, Wang X (2015) Tribulus terrestris extracts alleviate muscle damage and promote anaerobic performance of trained male boxers and its mechanisms: roles of androgen, IGF-1, and IGF binding protein-3. J Sport Health Sci 12:1–8
Rogerson S, Riches CJ, Jennings C, Weatherby RP, Meir RA, Marshall-Gradisnik SM (2007) The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. J Strength Cond Res 21(2):348–353. https://doi.org/10.1519/R-18395.1
Antonio J, Uelmen J, Rodriguez R, Earnest C (2000) The effects of Tribulus terrestris on body composition and exercise performance in resistance-trained males. Int J Sport Nutr Exerc Metab 10(2):208–215
Roaiah MF, El Khayat YI, GamalEl Din SF, Abd El Salam MA (2016) Pilot study on the effect of botanical medicine (Tribulus terrestris) on serum testosterone level and erectile function in aging males with partial androgen deficiency (PADAM). J Sex Marital Ther 42(4):297–301. https://doi.org/10.1080/0092623X.2015.1033579
Barillaro C, Liperoti R, Martone AM, Onder G, Landi F (2013) The new metabolic treatments for sarcopenia. Aging Clin Exp Res 25(2):119–127. https://doi.org/10.1007/s40520-013-0030-0
Yao K, Yin Y, Li X, Xi P, Wang J, Lei J, Hou Y, Wu G (2012) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42(6):2491–2500. https://doi.org/10.1007/s00726-011-1060-6
Cai X, Zhu C, Xu Y, Jing Y, Yuan Y, Wang L, Wang S, Zhu X, Gao P, Zhang Y, Jiang Q, Shu G (2016) Alpha-ketoglutarate promotes skeletal muscle hypertrophy and protein synthesis through Akt/mTOR signaling pathways. Sci Rep 6:26802. https://doi.org/10.1038/srep26802
Riedel E, Nündel M, Hampl H (1996) Alpha-Ketoglutarate application in hemodialysis patients improves amino acid metabolism. Nephron 74(2):261–265
Wirén M, Permert J, Larsson J (2002) Alpha-ketoglutarate-supplemented enteral nutrition: effects on postoperative nitrogen balance and muscle catabolism. Nutrition 18(9):725–728
Cynober L (2004) Ornithine alpha-ketoglutarate as a potent precursor of arginine and nitric oxide: a new job for an old friend. J Nutr 134 (10 Suppl):2858S–2862S. (discussion 2895S)
Le Bricon T, Coudray-Lucas C, Lioret N, Lim SK, Plassart F, Schlegel L, De Bandt JP, Saizy R, Giboudeau J, Cynober L (1997) Ornithine alpha-ketoglutarate metabolism after enteral administration in burn patients: bolus compared with continuous infusion. Am J Clin Nutr 65(2):512–518
Campbell B, Roberts M, Kerksick C, Wilborn C, Marcello B, Taylor L, Nassar E, Leutholtz B, Bowden R, Rasmussen C, Greenwood M, Kreider R (2006) Pharmacokinetics, safety, and effects on exercise performance of L-arginine alpha-ketoglutarate in trained adult men. Nutrition 22(9):872–881. https://doi.org/10.1016/j.nut.2006.06.003
Wax B, Kavazis AN, Webb HE, Brown SP (2012) Acute l-arginine alpha ketoglutarate supplementation fails to improve muscular performance in resistance trained and untrained men. J Int Soc Sports Nutr 9(1):17. https://doi.org/10.1186/1550-2783-9-17
Prosser JM, Majlesi N, Chan GM, Olsen D, Hoffman RS, Nelson LS (2009) Adverse effects associated with arginine alpha-ketoglutarate containing supplements. Hum Exp Toxicol 28(5):259–262. https://doi.org/10.1177/0960327109104498
Kokubo T, Maeda S, Tazumi K, Nozawa H, Miura Y, Kirisako T (2015) The effect of l-Ornithine on the phosphorylation of mTORC1 downstream targets in rat liver. Prev Nutr Food Sci 20(4):238–245. https://doi.org/10.3746/pnf.2015.20.4.238
Tujioka K, Yamada T, Aoki M, Morishita K, Hayase K, Yokogoshi H (2012) Dietary ornithine affects the tissue protein synthesis rate in young rats. J Nutr Sci Vitaminol (Tokyo) 58(4):297–302
Evain-Brion D, Donnadieu M, Roger M, Job JC (1982) Simultaneous study of somatotrophic and corticotrophic pituitary secretions during ornithine infusion test. Clin Endocrinol (Oxf) 17(2):119–122
Demura S, Yamada T, Yamaji S, Komatsu M, Morishita K (2010) The effect of l-ornithine hydrochloride ingestion on human growth hormone secretion after strength training. Adv Biosci Biotechnol 1:7–11
Bucci L, Hickson JF, Pivarnik JM, Wolinsky I, McMahon JC, Turner SD (1990) Ornithine ingestion and growth hormone release in bodybuilders. Nutr Res 10(3):239–245
Peeling P, Binnie MJ, Goods PSR, Sim M, Burke LM (2018) Evidence-based supplements for the enhancement of athletic performance. Int J Sport Nutr Exerc Metab 28(2):178–187. https://doi.org/10.1123/ijsnem.2017-0343
Jones AM (2014) Dietary nitrate supplementation and exercise performance. Sports Med 44 (Suppl 1):S35–S45. https://doi.org/10.1007/s40279-014-0149-y
Molfino A, Gioia G, Rossi Fanelli F, Muscaritoli M (2014) The role for dietary omega-3 fatty acids supplementation in older adults. Nutrients 6(10):4058–4073. https://doi.org/10.3390/nu6104058
Pencharz PB, Elango R, Ball RO (2012) Determination of the tolerable upper intake level of leucine in adult men. J Nutr 142(12):2220S–2224S. https://doi.org/10.3945/jn.112.160259
Kantartzis K, Fritsche L, Bombrich M, Machann J, Schick F, Staiger H, Kunz I, Schoop R, Lehn-Stefan A, Heni M, Peter A, Fritsche A, Häring HU, Stefan N (2018) Effects of resveratrol supplementation on liver fat content in overweight and insulin-resistant subjects: a randomized, double-blind, placebo-controlled clinical trial. Diabetes Obes Metab. https://doi.org/10.1111/dom.13268
Anton SD, Embry C, Marsiske M, Lu X, Doss H, Leeuwenburgh C, Manini TM (2014) Safety and metabolic outcomes of resveratrol supplementation in older adults: results of a twelve-week, placebo-controlled pilot study. Exp Gerontol 57:181–187. https://doi.org/10.1016/j.exger.2014.05.015
Acknowledgements
PLV is supported by University of Alcalá (FPI2016); JSM is supported by Spanish Ministry of Education, Culture and Sport (FPU14/03435); HPG is supported by Universidad Europea de Madrid (2017/UEM05) and Cátedra Real Madrid–Universidad Europea (2017/RM03); AL is supported by Spanish Ministry of Economy and Competitiveness and Fondos FEDER (PI15/00558).
Author information
Authors and Affiliations
Contributions
All authors have contributed significantly to the work: HPG and EE conceived the original idea; JSM and PLV wrote the initial draft; HP-G, EE and AL reviewed the draft and contributed to the final version of the manuscript. All authors (PLV, JSM, EE, HP-G and AL) have read and approved the final version of the manuscript, and agree with the order of presentation of the authors.
Corresponding author
Ethics declarations
Conflict of interest
Authors declare no conflict of interest.
Additional information
Helios Pareja-Galeano, Alejandro Lucia share senior authorship.
Rights and permissions
About this article
Cite this article
Valenzuela, P.L., Morales, J.S., Emanuele, E. et al. Supplements with purported effects on muscle mass and strength. Eur J Nutr 58, 2983–3008 (2019). https://doi.org/10.1007/s00394-018-1882-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00394-018-1882-z
Keywords
- Hypertrophy
- Ergogenic aid
- Skeletal muscle
- Protein supplementation
- Prevention of atrophy
- Sarcopenia