Skip to main content

Advertisement

Log in

The new metabolic treatments for sarcopenia

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

In terms of managing sarcopenia, many studies have shown that physical activity (in particular resistance exercise) and specific nutrition interventions such as protein and amino acids supplementation can improve muscle mass and strength in older adults. Moreover, several drugs have been suggested to have an impact on muscle outcomes, with various levels of scientific evidence. In the present paper we have reviewed the evidence regarding the effect of some new metabolic agents (vitamin D, leucine, β-hydroxy β-methylbutyrate, citrulline malate, ornithine, isoflavones) on sarcopenia and muscular outcomes in older adults. For each metabolic agent, we have also discussed the biological plausibility of the described effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cruz-Jentoft AJ, Landi F, Topinková E, Michel JP (2010) Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care 13:1–7

    Article  PubMed  Google Scholar 

  2. Braddy KK, Imam SN, Palla KR, Lee TA (2009) Vitamin d deficiency/insufficiency practice patterns in a veterans health administration long-term care population: a retrospective analysis. J Am Med Dir Assoc. 10:653–657

    Article  PubMed  Google Scholar 

  3. Morley JE, Argiles JM, Evans WJ et al (2009) Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc. 11:391–396

    Article  Google Scholar 

  4. Kung T, Springer J, Doehner W, Anker SD, von Haehling S (2010) Novel treatment approaches to cachexia and sarcopenia: highlights from the 5th Cachexia Conference. Expert Opin Investig Drugs 19:579–585

    Article  PubMed  CAS  Google Scholar 

  5. Rolland Y, Onder G, Morley JE, Gillette-Guyonet S, Abellan van Kan G, Vellas B (2011) Current and future pharmacologic treatment of sarcopenia. Clin Geriatr Med 27:423–447

    Article  PubMed  Google Scholar 

  6. Janssen HC, Samson MM, Verhaar HJ (2002) Vitamin D deficiency, muscle function, and falls in elderly people. Am J Clin Nutr 75:611–615

    PubMed  CAS  Google Scholar 

  7. Roth SM, Zmuda JM, Cauley JA, Shea PR, Ferrell RE (2004) Vitamin D receptor genotype is associated with fat-free mass and sarcopenia in elderly men. J Gerontol A Biol Sci Med Sci 59(1):10–15

    Article  PubMed  Google Scholar 

  8. Hamilton B (2010) Vitamin D and human skeletal muscle. Scand J Med Sci Sports 20:182–190

    PubMed  CAS  Google Scholar 

  9. Nguyen TM, Lieberherr M, Fritsch J et al (2004) The rapid effects of 1,25-dihydroxyvitamin D3 require the vitamin D receptor and influence 24-hydroxylase activity: studies in human skin fibroblasts bearing vitamin D receptor mutations. J Biol Chem 279:7591–7597

    Article  PubMed  CAS  Google Scholar 

  10. Schleithoff SS, Zittermann A, Tenderich G et al (2006) Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 83:754–759

    PubMed  CAS  Google Scholar 

  11. Scott D, Blizzard L, Fell J, Ding C, Winzenberg T, Jones G (2010) A prospective study of the associations between 25-hydroxy-vitamin D, sarcopenia progression and physical activity in older adults. Clin Endocrinol 73(5):581–587

    Article  CAS  Google Scholar 

  12. Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis. 20:187–192

    Article  PubMed  CAS  Google Scholar 

  13. Annweiler C, Schott AM, Berrut G et al (2009) Vitamin D related changes in physical performance: a systematic review. J Nutr Health Aging 13:893–898

    Article  PubMed  CAS  Google Scholar 

  14. Kim MK, Baek KH, Song KH, Kang MI, Park CY, Lee WY, Oh KW (2011) Vitamin D deficiency is associated with sarcopenia in older Koreans, regardless of obesity: the fourth Korea national health and nutrition examination surveys (KNHANES IV) 2009. J Clin Endocrinol Metab

  15. Visser M, Deeg DJH, Lips P (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88:5766–5772

    Article  PubMed  CAS  Google Scholar 

  16. Burton LA, Sumukadas D (2010) Optimal management of sarcopenia. Clin Interv Aging 5:217–228

    PubMed  CAS  Google Scholar 

  17. Bischoff HA, Stahelin HB, Dick W et al (2003) Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res 18:343–351

    Article  PubMed  CAS  Google Scholar 

  18. Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H (2009) Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int 20:315–322

    Article  PubMed  CAS  Google Scholar 

  19. Moreira-Pfrimer LD, Pedrosa MA, Teixeira L, Lazaretti-Castro M (2009) Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Ann Nutr Metab 54:291–300

    Article  PubMed  CAS  Google Scholar 

  20. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB et al (2009) Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 339:b3692

    Article  PubMed  CAS  Google Scholar 

  21. Verschueren SM, Bogaerts A, Delecluse C, Claessens AL, Haentjens P, Vanderschueren D, Boonen S (2011) The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. J Bone Miner Res 26:42–49

    Article  PubMed  CAS  Google Scholar 

  22. Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, Russo A, Bernabei R, Onder G (2011) Prevalence and risk factors of sarcopenia among nursing home older residents. J Gerontol A Biol Sci Med Sci

  23. Annweiler C, Schott AM, Berrut G et al (2010) Vitamin D and ageing: neurological issues. Neuropsychobiology 62:139–150

    Article  PubMed  CAS  Google Scholar 

  24. Buell JS, Dawson-Hughes B (2008) Vitamin D and neurocognitive dysfunction: preventing decline? Mol Aspects Med 29:415–422

    Article  PubMed  CAS  Google Scholar 

  25. Sanders KM, Stuart AL, Williamson EJ et al (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303:1815–1822

    Article  PubMed  CAS  Google Scholar 

  26. Paddon-Jones D, Rasmussen B (2009) Dietary protein recommendations and the prevention of sarcopenia: protein, amino acid metabolism and therapy. Curr Opin Clin Nutr Metab Care 12:86–90

    Article  PubMed  CAS  Google Scholar 

  27. Van Loon LJ (2007) Aminoacid as pharmaconutrients for the treatment of type 2 diabetes. Immunol Endocr Metab Agents med Chem 7:39–48

    Google Scholar 

  28. Findla GM, Yan L, Procter J, Mieulet V, Lamb RF (2007) A MAP4 kinase related to ste20 is a nutrient sensitive regulator of mTOR signaling. Biochem J 403:13–20

    Article  Google Scholar 

  29. Croizer SJ, Kimball SR, Emmert SW, Anthony JC, Jefferson LS (2005) Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr 135:376–382

    Google Scholar 

  30. Rieu I, Sornet C, Bayle G et al (2003) Leucine-supplemented meal feeding for ten days beneficially affects postprandial muscle protein synthesis in old rats. J Nutr 133:1198–1205

    PubMed  CAS  Google Scholar 

  31. Louard RJ, Barret EJ, Gelfand RA (1990) Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man. Clin Sci 79:457–466

    PubMed  CAS  Google Scholar 

  32. Nair KS, Schwartz RG, Welle S (1992) Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Physiol 263:E928–E934

    PubMed  CAS  Google Scholar 

  33. Bennet WM, Connacher AA, Scrimgeour CM, Smith K, Rennie MJ (1989) Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1-13c] leucine. Clin Sci 76:447–454

    PubMed  CAS  Google Scholar 

  34. Smith K, Barua JM, Watt PW, Scrimgeour CM, Rennie MJ (1992) Flooding with l-[1-13C]leucine stimulates human muscle protein incorporation of continuously infused l-[1-13C]valine. Am J Physiol 262:E372–E376

    Google Scholar 

  35. Volpi E, Mittendorfer B, Wolf SE, Wolf RR (1999) Oral amino acids stimulate muscle protein anabolism in elderly despite higher first pass splanchnic extraction. Am J Physiol 277:E513–E520

    PubMed  CAS  Google Scholar 

  36. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR (2003) Essential amino acids are primarily responsible for the amino acids stimulation of muscle protein anabolism in the healthy elderly adults. Am J Clin Nutr 78:250–258

    PubMed  CAS  Google Scholar 

  37. Paddon-Jones D, Sheffield-Moore M, Zhang XJ, et al (2008) Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab 286:E321–E328

    Google Scholar 

  38. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2005) Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr 82:1065–1073

    PubMed  CAS  Google Scholar 

  39. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the erderly. Am J Physiol Endocrinol Metab 291:E381–E387

    Article  PubMed  CAS  Google Scholar 

  40. Nissen SL, Abumrad NN (1997) Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 8:300–311

    Article  CAS  Google Scholar 

  41. Eley HL, Russell ST, Tisdale MJ (2008) Attenuation of depression of muscle protein synthesis induced by lipopolysaccharide, tumor necrosis factor, and angiotensin II by β-hydroxy-β-methylbutyrate. Am J Physiol Endocrinol Metab. 295:E1409–E1416

    Article  PubMed  CAS  Google Scholar 

  42. Eley HL, Russell ST, Tisdale MJ (2008) Mechanism of attenuation of muscle protein degradation induced by tumor necrosis factor-a and angiotensin II by β-hydroxy-β-methylbutyrate. Am J Physiol Endocrinol Metab 295:E1417–E1426

    Article  PubMed  CAS  Google Scholar 

  43. Eley HL, Russell ST, Baxter JH, Mukerji P, Tisdale MJ (2007) Signaling pathways initiated by β-hydroxy-β-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am J Physiol Endocrinol Metab 293:E923–E931

    Article  PubMed  CAS  Google Scholar 

  44. Manzano M, Giron MD, Salto R, Sevillano N, Rueda R, Lopez-Pedrosa JM (2009) Is β-hydroxy-β-methylbutyrate (HMB) the bioactive metabolite of l-leucine (LEU) in muscle? Molecular evidence and potential implications. Abstract presented at: European Society for Clinical Nutrition and Metabolism 31st Congress; Vienna, Austria (Abstract P267)

  45. Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR (2008) Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 87(suppl):1562S–1566S

    PubMed  CAS  Google Scholar 

  46. Flakoll P, Sharp R, Baier S, Levenhagen D, Carr C, Nissen S (2004) Effect of β-hydroxy-β-methylbutyrate, arginine, and lysine supplementation on strength, functionality, body composition, and protein metabolism in elderly women. Nutrition 20:445–451

    Article  PubMed  CAS  Google Scholar 

  47. Vukovich MD, Stubbs NB, Bohlken RM (2001) Body composition in 70-year old adults responds to dietary β-hydroxy-β-methylbutyrate similarly to that of young adults. J Nutr 131:2049–2052

    PubMed  CAS  Google Scholar 

  48. Clark RH, Feleke G, Din M et al (2000) Nutritional treatment for acquired immunodeficiency virus-associated wasting using β-hydroxy β-methybutyrate, glutamine, and arginine: a randomised, double-blind, placebo controlled study. J Parenter Enteral Nutr 24:133–139

    Article  CAS  Google Scholar 

  49. May PE, Barber A, D’Olimpio JT, Hourihane A, Abumrad NN (2002) Reversal of cancer-related wasting using oral supplementation with a combination of β-hydroxy-β-methylbutyrate, arginine, and glutamine. Am J Surg 183:471–479

    Article  PubMed  CAS  Google Scholar 

  50. Hsieh LC, Chien SL, Huang MS, Tseng HF, Chang CK (2006) Anti-inflammatory and anticatabolic effects of short-term β-hydroxy-β-methylbutyrate supplementation on chronic obstructive pulmonary disease patients in intensive care unit. Asia Pac J Clin Nutr. 15:544–550

    PubMed  CAS  Google Scholar 

  51. Pe′ rez-Guisado J, Jakeman PM (2010) Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J Strength Cond Res 24(5):1215–1222

  52. Callis A, Magnan de Bornier B, Serrano JJ, Bellet H, Saumade R (1991) Activity of citrulline malate on acid-base balance and blood ammonia and amino acid levels. Study in the animal and in man. Arzneimittelforschung 41(6):660–663

    Google Scholar 

  53. Bendahan D, Mattei JP, Ghattas B, Confort-Gouny S, Le Guern ME, Cozzone PJ (2002) Citrulline/malate promotes aerobic energy production in human exercising muscle. Br J Sports Med 36:282–289

    Article  PubMed  CAS  Google Scholar 

  54. Vanuxem P, Vanuxem D, Fomaris E, Bernasconi P (1986) The role of lactate and ammonium in fatigue. Gazette Medicale 7:62–72

    Google Scholar 

  55. Petrovic V, Buzadzic B, Korac A, Vasilijevic A, Jankovic A, Micunovic K, Korac B (2008) Antioxidative defence alterations in skeletal muscle during prolonged acclimation to cold: role of l-arginine/NO-producing pathway. J Exp Biol 211:114–120

    Article  PubMed  CAS  Google Scholar 

  56. Walrand S (2010) Ornithine alpha-ketoglutarate: could it be a new therapeutic option for sarcopenia? J Nutr Health Aging 14(7):570–577

    Article  PubMed  CAS  Google Scholar 

  57. Moeller LE, Peterson CT, Hanson KB et al (2003) Isoflavone-rich soy protein prevents loss of hip lean mass but does not prevent the shift in regional fat distribution in perimenopausal women. Menopause 10(4):322–331

    Article  PubMed  Google Scholar 

  58. Aubertin-Leheudre M, Lord C, Khalil A, Dionne IJ (2007) Six months of isoflavone supplement increases fat-free mass in obese-sarcopenic postmenopausal women: a randomized double-blind controlled trial. Eur J Clin Nutr 61:1442–1444

    Article  PubMed  CAS  Google Scholar 

  59. Maesta N, Nahas EA, Nahas-Neto J et al (2007) Effects of soy protein and resistance exercise on body composition and blood lipids in postmenopausal women. Maturitas 56(4):350–358

    Article  PubMed  CAS  Google Scholar 

  60. Chilibeck PD, Cornish SM (2008) Effect of estrogenic compounds (estrogen or phytoestrogens) combined with exercise on bone and muscle mass in older individuals. Appl Physiol Nutr Metab 33:200–212

    Article  PubMed  CAS  Google Scholar 

  61. Nikawa T, Ikemoto M, Sakai T, Kano M, Kitano T, Kawahara T, Teshima S, Rokutan K, Kishi K (2002) Effects of a soy protein diet on exercise-induced muscle protein catabolism in rats. Nutrition 18:490–495

    Article  PubMed  CAS  Google Scholar 

  62. Candow DG, Chilibeck PD, Abeysekara S, Zello GA (2011) Short-term heavy resistance training eliminates age-related deficits in muscle mass and strength in healthy older males. J Strength Cond Res. 25:326–333

    Article  PubMed  Google Scholar 

  63. Onder G, Della Vedova C, Landi F (2009) Validated treatments and therapeutics prospectives regarding pharmacological products for sarcopenia. J Nutr Health Aging 13:746–756

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Landi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barillaro, C., Liperoti, R., Martone, A.M. et al. The new metabolic treatments for sarcopenia. Aging Clin Exp Res 25, 119–127 (2013). https://doi.org/10.1007/s40520-013-0030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-013-0030-0

Keywords

Navigation