Skip to main content
Log in

Dietary fat and carbohydrate quality have independent effects on postprandial glucose and lipid responses

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The magnitude of postprandial lipemia is influenced not only by the amount but also the type of fat and carbohydrate consumed. The aim of this study was to evaluate differences in postprandial glucose and lipid responses after a mixed meal containing low- or high-glycemic-index (GI) carbohydrate and three different types of fat varying in the degree of saturation in healthy subjects.

Methods

A randomized, controlled, single-blinded crossover study was conducted in 20 healthy Chinese men. Subjects consumed in random order six experimental isocaloric meals that differed in carbohydrate and fat quality, and contained 40 g of either saturated fat (SFA, butter), monounsaturated fat (MUFA, olive oil) or polyunsaturated fat (PUFA, grapeseed oil), and 50 g of either low-GI (basmati rice) or high-GI (jasmine rice) carbohydrate. Glucose, insulin, c-peptide, triglycerides (TG) and non-esterified fatty acids (NEFA) were measured over 4 h.

Results

For all substrates evaluated, there were no significant interactions between fat and carbohydrate. The incremental area under the curve (iAUC) for TG was significantly lower after the SFA and PUFA meals compared with the MUFA meal, irrespective of GI. No significant difference was found for NEFA iAUC in all treatments. Glucose, insulin and c-peptide iAUCs were significantly lower after ingestion of low-GI than high-GI meals, independent of the type of fat.

Conclusions

A carbohydrate-rich meal (of either low or high GI) that contains butter or grapeseed oil results in lower postprandial TG concentrations relative to olive oil in healthy Chinese males. Glucose, insulin and c-peptide responses, however, are directly dependent on the GI of the meal and not on the degree of saturation of dietary fat.

The trial was registered at clinicaltrials.gov as NCT02585427.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, Zimmet P, Son HY (2006) Epidemic obesity and type 2 diabetes in Asia. Lancet 368:1681–1688. doi:10.1016/S0140-6736(06)69703-1

    Article  Google Scholar 

  2. Nanditha A, Ma RC, Ramachandran A, Snehalatha C, Chan JC, Chia KS, Shaw JE, Zimmet PZ (2016) Diabetes in Asia and the Pacific: implications for the global epidemic. Diabetes Care 39:472–485. doi:10.2337/dc15-1536

    Article  CAS  Google Scholar 

  3. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34:362–366

    Article  CAS  Google Scholar 

  4. Hodge AM, English DR, O’Dea K, Giles GG (2004) Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 27:2701–2706

    Article  Google Scholar 

  5. Brand-Miller JC (2003) Glycemic load and chronic disease. Nutr Rev 61:S49–S55

    Article  Google Scholar 

  6. Bhupathiraju SN, Tobias DK, Malik VS, Pan A, Hruby A, Manson JE, Willett WC, Hu FB (2014) Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am J Clin Nutr 100:218–232. doi:10.3945/ajcn.113.079533

    Article  CAS  Google Scholar 

  7. Ma XY, Liu JP, Song ZY (2012) Glycemic load, glycemic index and risk of cardiovascular diseases: meta-analyses of prospective studies. Atherosclerosis 223:491–496. doi:10.1016/j.atherosclerosis.2012.05.028

    Article  CAS  Google Scholar 

  8. Langsted A, Freiberg JJ, Tybjaerg-Hansen A, Schnohr P, Jensen GB, Nordestgaard BG (2011) Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med 270:65–75. doi:10.1111/j.1365-2796.2010.02333.x

    Article  CAS  Google Scholar 

  9. Mora S, Rifai N, Buring JE, Ridker PM (2008) Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation 118:993–1001. doi:10.1161/CIRCULATIONAHA.108.777334

    Article  CAS  Google Scholar 

  10. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308. doi:10.1001/jama.298.3.299

    Article  CAS  Google Scholar 

  11. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298:309–316. doi:10.1001/jama.298.3.309

    Article  CAS  Google Scholar 

  12. Liu J, Zeng FF, Liu ZM, Zhang CX, Ling WH, Chen YM (2013) Effects of blood triglycerides on cardiovascular and all-cause mortality: a systematic review and meta-analysis of 61 prospective studies. Lipids Health Dis 12:159. doi:10.1186/1476-511X-12-159

    Article  Google Scholar 

  13. Schrezenmeir J, Fenselau S, Keppler I, Abel J, Orth B, Laue C, Sturmer W, Fauth U, Halmagyi M, Marz W (1997) Postprandial triglyceride high response and the metabolic syndrome. Ann N Y Acad Sci 827:353–368

    Article  CAS  Google Scholar 

  14. Mekki N, Charbonnier M, Borel P, Leonardi J, Juhel C, Portugal H, Lairon D (2002) Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. J Nutr 132:3642–3649

    Article  CAS  Google Scholar 

  15. Tholstrup T, Sandstrom B, Bysted A, Holmer G (2001) Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men. Am J Clin Nutr 73:198–208

    Article  CAS  Google Scholar 

  16. Higashi K, Ishikawa T, Shige H, Tomiyasu K, Yoshida H, Ito T, Nakajima K, Yonemura A, Sawada S, Nakamura H (1997) Olive oil increases the magnitude of postprandial chylomicron remnants compared to milk fat and safflower oil. J Am Coll Nutr 16:429–434

    Article  CAS  Google Scholar 

  17. Thomsen C, Rasmussen O, Lousen T, Holst JJ, Fenselau S, Schrezenmeir J, Hermansen K (1999) Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 69:1135–1143

    Article  CAS  Google Scholar 

  18. Cohen JC, Schall R (1988) Reassessing the effects of simple carbohydrates on the serum triglyceride responses to fat meals. Am J Clin Nutr 48:1031–1034

    Article  CAS  Google Scholar 

  19. Mann JI, Truswell AS, Pimstone BL (1971) The different effects of oral sucrose and glucose on alimentary lipaemia. Clin Sci 41:123–129

    Article  CAS  Google Scholar 

  20. Saito H, Kato M, Yoshida A, Naito M (2015) The ingestion of a fructose-containing beverage combined with fat cream exacerbates postprandial lipidemia in young healthy women. J Atheroscler Thromb 22:645. doi:10.5551/jat.Erratum22681

    Article  Google Scholar 

  21. Cohen JC, Noakes TD, Benade AJ (1988) Serum triglyceride responses to fatty meals: effects of meal fat content. Am J Clin Nutr 47:825–827

    Article  CAS  Google Scholar 

  22. Dubois C, Beaumier G, Juhel C, Armand M, Portugal H, Pauli AM, Borel P, Latge C, Lairon D (1998) Effects of graded amounts (0–50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am J Clin Nutr 67:31–38

    Article  CAS  Google Scholar 

  23. Radulescu A, Hassan Y, Gannon MC, Nuttall FQ (2009) The degree of saturation of fatty acids in dietary fats does not affect the metabolic response to ingested carbohydrate. J Am Coll Nutr 28:286–295

    Article  CAS  Google Scholar 

  24. Lairon D, Play B, Jourdheuil-Rahmani D (2007) Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. J Nutr Biochem 18:217–227. doi:10.1016/j.jnutbio.2006.08.001

    Article  CAS  Google Scholar 

  25. Jeppesen J, Chen YD, Zhou MY, Wang T, Reaven GM (1995) Effect of variations in oral fat and carbohydrate load on postprandial lipemia. Am J Clin Nutr 62:1201–1205

    Article  CAS  Google Scholar 

  26. Collier G, McLean A, O’Dea K (1984) Effect of co-ingestion of fat on the metabolic responses to slowly and rapidly absorbed carbohydrates. Diabetologia 26:50–54

    Article  CAS  Google Scholar 

  27. Collier G, O’Dea K (1983) The effect of coingestion of fat on the glucose, insulin, and gastric inhibitory polypeptide responses to carbohydrate and protein. Am J Clin Nutr 37:941–944

    Article  CAS  Google Scholar 

  28. Joannic JL, Auboiron S, Raison J, Basdevant A, Bornet F, Guy-Grand B (1997) How the degree of unsaturation of dietary fatty acids influences the glucose and insulin responses to different carbohydrates in mixed meals. Am J Clin Nutr 65:1427–1433

    Article  CAS  Google Scholar 

  29. Tan VM, Wu T, Henry CJ, Lee YS (2015) Glycaemic and insulin responses, glycaemic index and insulinaemic index values of rice between three Asian ethnic groups. Br J Nutr 113:1228–1236. doi:10.1017/S0007114515000586

    Article  CAS  Google Scholar 

  30. Eberly LE, Stamler J, Neaton JD (2003) Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease. Arch Intern Med 163:1077–1083. doi:10.1001/archinte.163.9.1077

    Article  Google Scholar 

  31. van Greevenbroek MM, Robertus-Teunissen MG, Erkelens DW, de Bruin TW (1998) Participation of the microsomal triglyceride transfer protein in lipoprotein assembly in Caco-2 cells: interaction with saturated and unsaturated dietary fatty acids. J Lipid Res 39:173–185

    Google Scholar 

  32. Jones PJ, Pencharz PB, Clandinin MT (1985) Absorption of 13C-labeled stearic, oleic, and linoleic acids in humans: application to breath tests. J Lab Clin Med 105:647–652

    CAS  Google Scholar 

  33. de Bruin TW, Brouwer CB, van Linde-Sibenius Trip M, Jansen H, Erkelens DW (1993) Different postprandial metabolism of olive oil and soybean oil: a possible mechanism of the high-density lipoprotein conserving effect of olive oil. Am J Clin Nutr 58:477–483

    Article  Google Scholar 

  34. Purcell R, Latham SH, Botham KM, Hall WL, Wheeler-Jones CP (2014) High-fat meals rich in EPA plus DHA compared with DHA only have differential effects on postprandial lipemia and plasma 8-isoprostane F2alpha concentrations relative to a control high-oleic acid meal: a randomized controlled trial. Am J Clin Nutr 100:1019–1028. doi:10.3945/ajcn.114.091223

    Article  CAS  Google Scholar 

  35. Sun L, Ranawana DV, Leow MK, Henry CJ (2014) Effect of chicken, fat and vegetable on glycaemia and insulinaemia to a white rice-based meal in healthy adults. Eur J Nutr. doi:10.1007/s00394-014-0678-z

    Google Scholar 

  36. Gentilcore D, Chaikomin R, Jones KL, Russo A, Feinle-Bisset C, Wishart JM, Rayner CK, Horowitz M (2006) Effects of fat on gastric emptying of and the glycemic, insulin, and incretin responses to a carbohydrate meal in type 2 diabetes. J Clin Endocrinol Metabol 91:2062–2067. doi:10.1210/jc.2005-2644

    Article  CAS  Google Scholar 

  37. Robertson MD, Jackson KG, Fielding BA, Morgan LM, Williams CM, Frayn KN (2002) Acute ingestion of a meal rich in n-3 polyunsaturated fatty acids results in rapid gastric emptying in humans. Am J Clin Nutr 76:232–238

    Article  CAS  Google Scholar 

  38. MacIntosh CG, Holt SH, Brand-Miller JC (2003) The degree of fat saturation does not alter glycemic, insulinemic or satiety responses to a starchy staple in healthy men. J Nutr 133:2577–2580

    Article  CAS  Google Scholar 

  39. Henry CJ, Lightowler HJ, Newens KJ, Pata N (2008) The influence of adding fats of varying saturation on the glycaemic response of white bread. Int J Food Sci Nutr 59:61–69. doi:10.1080/09637480701664183

    Article  Google Scholar 

  40. Gatti E, Noe D, Pazzucconi F, Gianfranceschi G, Porrini M, Testolin G, Sirtori CR (1992) Differential effect of unsaturated oils and butter on blood glucose and insulin response to carbohydrate in normal volunteers. Eur J Clin Nutr 46:161–166

    CAS  Google Scholar 

  41. Pedersen A, Marckmann P, Sandstrom B (1999) Postprandial lipoprotein, glucose and insulin responses after two consecutive meals containing rapeseed oil, sunflower oil or palm oil with or without glucose at the first meal. Br J Nutr 82:97–104

    CAS  Google Scholar 

  42. Rasmussen O, Lauszus FF, Christiansen C, Thomsen C, Hermansen K (1996) Differential effects of saturated and monounsaturated fat on blood glucose and insulin responses in subjects with non-insulin-dependent diabetes mellitus. Am J Clin Nutr 63:249–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the volunteers who participated in this trial. The study was supported by the Singapore Institute for Clinical Sciences, A*STAR (Grant No. SPF 2013/003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiani Jeyakumar Henry.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Tan, K.W.J., Lim, J.Z. et al. Dietary fat and carbohydrate quality have independent effects on postprandial glucose and lipid responses. Eur J Nutr 57, 243–250 (2018). https://doi.org/10.1007/s00394-016-1313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1313-y

Keywords

Navigation