European Journal of Nutrition

, Volume 55, Issue 4, pp 1345–1358 | Cite as

Coffee consumption, obesity and type 2 diabetes: a mini-review

  • Roseane Maria Maia Santos
  • Darcy Roberto Andrade Lima
Review

Abstract

Purpose

The effects of regular coffee intake on weight gain and development of diabetes are reviewed. The pathophysiology of obesity and type 2 diabetes as well as the necessity of preventive options based on the increasing prevalence of these two disorders worldwide is briefly discussed. The relationship between weight gain and development of diabetes is also presented. The two major constituents in the brewed coffee, chlorogenic acids and caffeine, are responsible for many of the beneficial effects suggested by numerous epidemiological studies of coffee consumption and the development of diabetes.

Methods

A wide search of various databases, such as PubMed and Google Scholar, preceded the writing of this manuscript, focusing on key words that are part of the title. It was selected mainly review papers from in vivo, ex vivo, in vitro experimental studies in animals and human tissues as well as wide population-based epidemiological studies in the last 10 years.

Conclusion

As of today, there are mounting evidences of the reduced risk of developing type 2 diabetes by regular coffee drinkers of 3–4 cups a day. The effects are likely due to the presence of chlorogenic acids and caffeine, the two constituents of coffee in higher concentration after the roasting process.

Keywords

Coffee Obesity Diabetes Chlorogenic acid Caffeine 

References

  1. 1.
    Leong KS, Wilding JP (1999) Obesity and diabetes. Bailliere’s Best Pract Res Clin Endocrinol Metab 13(2):221–237CrossRefGoogle Scholar
  2. 2.
    Bailey CJ (2011) The challenge of managing coexistent type 2 diabetes and obesity. BMJ 342:d1996. doi:10.1136/bmj.d1996 CrossRefGoogle Scholar
  3. 3.
    Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444(7121):881–887. doi:10.1038/nature05488 CrossRefGoogle Scholar
  4. 4.
    Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867. doi:10.1038/nature05485 CrossRefGoogle Scholar
  5. 5.
    Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846. doi:10.1038/nature05482 CrossRefGoogle Scholar
  6. 6.
    Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, Tibblin G (1984) Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed) 288(6428):1401–1404CrossRefGoogle Scholar
  7. 7.
    Astrup A, Finer N (2000) Redefining type 2 diabetes: ‘diabesity’ or ‘obesity dependent diabetes mellitus’? Obes 1(2):57–59Google Scholar
  8. 8.
    Pincock S (2006) Paul Zimmet: fighting the “diabesity” pandemic. Lancet 368(9548):1643. doi:10.1016/S0140-6736(06)69682-7 CrossRefGoogle Scholar
  9. 9.
    Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414(6865):782–787. doi:10.1038/414782a CrossRefGoogle Scholar
  10. 10.
    International Diabetes F (2013) IDF Atlas 6th edition. Paper presented at the Sixty-Six World Health AssemblyGoogle Scholar
  11. 11.
    International Diabetes F (2013) IDF Atlas, 6th edn. IDF, Brussels, BelgiumGoogle Scholar
  12. 12.
    CDC, System NDS (2012) The diabetes report card 2012. www.cdc.gov/diabetes/statistics
  13. 13.
    Han TS, van Leer EM, Seidell JC, Lean ME (1995) Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. BMJ 311(7017):1401–1405CrossRefGoogle Scholar
  14. 14.
    Ashwell M, Gunn P, Gibson S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 13(3):275–286. doi:10.1111/j.1467-789X.2011.00952.x CrossRefGoogle Scholar
  15. 15.
    Savva SC, Lamnisos D, Kafatos AG (2013) Predicting cardiometabolic risk: waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab Syndr Obes Targets Ther 6:403–419. doi:10.2147/DMSO.S34220 CrossRefGoogle Scholar
  16. 16.
    Galgani JE, Moro C, Ravussin E (2008) Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab 295(5):E1009–E1017. doi:10.1152/ajpendo.90558.2008 CrossRefGoogle Scholar
  17. 17.
    Elkaim Y News studies confirm the surprising relationship between sugar, insulin resistance and heart disease (2011). http://www.supernutritionacademy.com/sugar-insulin-resistance-and-heart-disease/. Accessed 8 Aug 2015
  18. 18.
    Farah A, Duarte G (2015) Bioavailability and metabolism of chlorogenic acids from coffee. In: Preedy VR (ed) Coffee in health and disease prevention. Elsevier, New YorkGoogle Scholar
  19. 19.
    Santos RML (2009) An unashamed defense of coffee: 101 reasons to drink coffee without guilt. XLibris, USAGoogle Scholar
  20. 20.
    Esquivel P, Jimenez VM (2012) Functional properties of coffee and coffee by-products. Food Res Intern 46:488–495CrossRefGoogle Scholar
  21. 21.
    Bekedam EK, Schols HA, Cammerer B, Kroh LW, van Boekel MA, Smit G (2008) Electron spin resonance (ESR) studies on the formation of roasting-induced antioxidative structures in coffee brews at different degrees of roast. J Agric Food Chem 56(12):4597–4604. doi:10.1021/jf8004004 CrossRefGoogle Scholar
  22. 22.
    del Castillo MD, Ames JM, Gordon MH (2002) Effect of roasting on the antioxidant activity of coffee brews. J Agric Food Chem 50(13):3698–3703CrossRefGoogle Scholar
  23. 23.
    Rivera J (2014) Unlocking coffee’s chemical composition Part I and II. http://www.coffeechemistry.com. Accessed 15 Dec 2015
  24. 24.
    Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J (1990) Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 51(5):759–767Google Scholar
  25. 25.
    Goldstein E, Jacobs PL, Whitehurst M, Penhollow T, Antonio J (2010) Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr 7:18. doi:10.1186/1550-2783-7-18 CrossRefGoogle Scholar
  26. 26.
    Arciero PJ, Bougopoulos CL, Nindl BC, Benowitz NL (2000) Influence of age on the thermic response to caffeine in women. Metab Clin Exp 49(1):101–107CrossRefGoogle Scholar
  27. 27.
    Astrup A, Toubro S (1993) Thermogenic, metabolic, and cardiovascular responses to ephedrine and caffeine in man. Int J Obes Relat Metab Disord J Int Assoc Study Obes 17(Suppl 1):S41–S43Google Scholar
  28. 28.
    Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J (1999) Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70(6):1040–1045Google Scholar
  29. 29.
    Greenberg JA, Axen KV, Schnoll R, Boozer CN (2005) Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond) 29(9):1121–1129. doi:10.1038/sj.ijo.0802999 CrossRefGoogle Scholar
  30. 30.
    Paluska SA (2003) Caffeine and exercise. Curr Sports Med Rep 2(4):213–219CrossRefGoogle Scholar
  31. 31.
    Graham TE (2001) Caffeine, coffee and ephedrine: impact on exercise performance and metabolism. Can J Appl Physiol Revue canadienne de physiologie appliquee 26(Suppl):S103–S119Google Scholar
  32. 32.
    Magkos F, Kavouras SA (2005) Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45(7–8):535–562. doi:10.1080/1040-830491379245 CrossRefGoogle Scholar
  33. 33.
    Nehlig A, Debry G (1994) Caffeine and sports activity: a review. Int J Sports Med 15(5):215–223. doi:10.1055/s-2007-1021049 CrossRefGoogle Scholar
  34. 34.
    Spriet LL (1995) Caffeine and performance. Int J Sport Nutr 5(Suppl):S84–S99Google Scholar
  35. 35.
    Rustenbeck I, Lier-Glaubitz V, Willenborg M, Eggert F, Engelhardt U, Jorns A (2014) Effect of chronic coffee consumption on weight gain and glycaemia in a mouse model of obesity and type 2 diabetes. Nutr Diabetes 4:e123. doi:10.1038/nutd.2014.19 CrossRefGoogle Scholar
  36. 36.
    Mellbye FB, Jeppesen PB, Hermansen K, Gregersen S (2015) Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J Nat Prod 78(10):2447–2451. doi:10.1021/acs.jnatprod.5b00481 CrossRefGoogle Scholar
  37. 37.
    Morisco F, Lembo V, Mazzone G, Camera S, Caporaso N (2014) Coffee and liver health. J Clin Gastroenterol 48(Suppl 1):S87–S90. doi:10.1097/MCG.0000000000000240 CrossRefGoogle Scholar
  38. 38.
    Cavin C, Holzhaeuser D, Scharf G, Constable A, Huber WW, Schilter B (2002) Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 40(8):1155–1163CrossRefGoogle Scholar
  39. 39.
    Cavin C, Mace K, Offord EA, Schilter B (2001) Protective effects of coffee diterpenes against aflatoxin B1-induced genotoxicity: mechanisms in rat and human cells. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 39(6):549–556CrossRefGoogle Scholar
  40. 40.
    Gross-Steinmeyer K, Eaton DL (2012) Dietary modulation of the biotransformation and genotoxicity of aflatoxin B(1). Toxicology 299(2–3):69–79. doi:10.1016/j.tox.2012.05.016 CrossRefGoogle Scholar
  41. 41.
    Zanotti I, Dall’Asta M, Mena P, Mele L, Bruni R, Ray S, Del Rio D (2015) Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism. Food Funct 6(1):13–31. doi:10.1039/c4fo00670d CrossRefGoogle Scholar
  42. 42.
    Tresserra-Rimbau A, Medina-Remon A, Estruch R, Lamuela-Raventos RM (2015) Coffee polyphenols and high cardiovascular risk parameters. In: Preedy VR (ed) Coffee in health and disease prevention. Elsevier Inc., New York, pp 387–394Google Scholar
  43. 43.
    Olthof MR, Hollman PC, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131(1):66–71Google Scholar
  44. 44.
    Olthof MR, Hollman PC, Buijsman MN, van Amelsvoort JM, Katan MB (2003) Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J Nutr 133(6):1806–1814Google Scholar
  45. 45.
    Cowan TE, Palmnas MS, Yang J, Bomhof MR, Ardell KL, Reimer RA, Vogel HJ, Shearer J (2014) Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. J Nutr Biochem 25(4):489–495. doi:10.1016/j.jnutbio.2013.12.009 CrossRefGoogle Scholar
  46. 46.
    Lafay S, Gil-Izquierdo A, Manach C, Morand C, Besson C, Scalbert A (2006) Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr 136(5):1192–1197Google Scholar
  47. 47.
    Redeuil K, Smarrito-Menozzi C, Guy P, Rezzi S, Dionisi F, Williamson G, Nagy K, Renouf M (2011) Identification of novel circulating coffee metabolites in human plasma by liquid chromatography-mass spectrometry. J Chromatogr A 1218(29):4678–4688. doi:10.1016/j.chroma.2011.05.050 CrossRefGoogle Scholar
  48. 48.
    Fumeaux R, Menozzi-Smarrito C, Stalmach A, Munari C, Kraehenbuehl K, Steiling H, Crozier A, Williamson G, Barron D (2010) First synthesis, characterization, and evidence for the presence of hydroxycinnamic acid sulfate and glucuronide conjugates in human biological fluids as a result of coffee consumption. Org Biomol Chem 8(22):5199–5211. doi:10.1039/c0ob00137f CrossRefGoogle Scholar
  49. 49.
    Natella F, Nardini M, Giannetti I, Dattilo C, Scaccini C (2002) Coffee drinking influences plasma antioxidant capacity in humans. J Agric Food Chem 50(21):6211–6216CrossRefGoogle Scholar
  50. 50.
    Serafini M, Testa MF (2009) Redox ingredients for oxidative stress prevention: the unexplored potentiality of coffee. Clin Dermatol 27(2):225–229. doi:10.1016/j.clindermatol.2008.04.007 CrossRefGoogle Scholar
  51. 51.
    Svilaas A, Sakhi AK, Andersen LF, Svilaas T, Strom EC, Jacobs DR Jr, Ose L, Blomhoff R (2004) Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. J Nutr 134(3):562–567Google Scholar
  52. 52.
    Wang H-Y, Quian H, Yao W-R (2011) Melanoidins produced by the Maillard reaction: structure and biological activity. Food Chem 128:573–584CrossRefGoogle Scholar
  53. 53.
    Troup GJ, Navarini L, Suggi Liverani F, Drew SC (2015) Stable radical content and anti-radical activity of roasted Arabica coffee: from in-tact bean to coffee brew. PLoS ONE 10(4):e0122834. doi:10.1371/journal.pone.0122834 CrossRefGoogle Scholar
  54. 54.
    Jimenez-Zamora A, Pastoriza S, Rufian-Henares J (2015) Revalorization of Coffee Byproducts. LWT Food Sci Technol 61:12–18CrossRefGoogle Scholar
  55. 55.
    Cruz R, Mendes E, Torrinha A, Morais S, Pereira JA, Baptista P, Casal S (2014) Revalorization of spent coffee residues by direct agronomic approach. Food Res Int 73:190–196Google Scholar
  56. 56.
    Monente C, Ludwig IA, Irigoyen A, De Pena MP, Cid C (2015) Assessment of total (free and bound) phenolic compounds in spent coffee extracts. J Agric Food Chem 63(17):4327–4334. doi:10.1021/acs.jafc.5b01619 CrossRefGoogle Scholar
  57. 57.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723. doi:10.1073/pnas.0407076101 CrossRefGoogle Scholar
  58. 58.
    Mills CE, Tzounis X, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JP (2015) In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br J Nutr 113(8):1220–1227. doi:10.1017/S0007114514003948 CrossRefGoogle Scholar
  59. 59.
    Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892. doi:10.1089/ars.2012.4581 CrossRefGoogle Scholar
  60. 60.
    Narita Y, Inouye K (2009) Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas alpha-amylase isozymes I and II. J Agric Food Chem 57(19):9218–9225. doi:10.1021/jf9017383 CrossRefGoogle Scholar
  61. 61.
    Vinson JA, Burnham BR, Nagendran MV (2012) Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects. Diabetes Metab Syndr Obes Targets Ther 5:21–27. doi:10.2147/DMSO.S27665 CrossRefGoogle Scholar
  62. 62.
    Akash MS, Rehman K, Chen S (2014) Effects of coffee on type 2 diabetes mellitus. Nutrition 30(7–8):755–763. doi:10.1016/j.nut.2013.11.020 CrossRefGoogle Scholar
  63. 63.
    Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K (2001) alpha-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agric Food Chem 49(4):1948–1951CrossRefGoogle Scholar
  64. 64.
    Johnston KL, Clifford MN, Morgan LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78(4):728–733Google Scholar
  65. 65.
    Song SJ, Choi S, Park T (2014) Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice. Evid Based Complement Altern Med 2014:718379. doi:10.1155/2014/718379 Google Scholar
  66. 66.
    Jia H, Aw W, Egashira K, Takahashi S, Aoyama S, Saito K, Kishimoto Y, Kato H (2014) Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice. Genes Nutr 9(3):389. doi:10.1007/s12263-014-0389-3 CrossRefGoogle Scholar
  67. 67.
    van Dam RM (2006) Coffee and type 2 diabetes: from beans to beta-cells. Nut Metab Cardiovasc Dis 16(1):69–77. doi:10.1016/j.numecd.2005.10.003 CrossRefGoogle Scholar
  68. 68.
    Takahashi S, Saito K, Jia H, Kato H (2014) An integrated multi-omics study revealed metabolic alterations underlying the effects of coffee consumption. PLoS ONE 9(3):e91134. doi:10.1371/journal.pone.0091134 CrossRefGoogle Scholar
  69. 69.
    Fukushima Y, Kasuga M, Nakao K, Shimomura I, Matsuzawa Y (2009) Effects of coffee on inflammatory cytokine gene expression in mice fed high-fat diets. J Agric Food Chem 57(23):11100–11105. doi:10.1021/jf901278u CrossRefGoogle Scholar
  70. 70.
    Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, Shibuya Y, Hase T (2011) Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6 J mice. Am J Physiol Endocrinol Metab 300(1):E122–E133. doi:10.1152/ajpendo.00441.2010 CrossRefGoogle Scholar
  71. 71.
    Davidson MH (2006) Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol 98(4A):27i–33i. doi:10.1016/j.amjcard.2005.12.024 CrossRefGoogle Scholar
  72. 72.
    Kim HJ, Takahashi M, Ezaki O (1999) Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J Biol Chem 274(36):25892–25898CrossRefGoogle Scholar
  73. 73.
    Malloy MJ, Kane JP (2015) Agents used in dyslipidemia. In: Katzung BG, Trevor AJ (eds) Basic and clinical pharmacology, 13th edn. McGraw Hill, United StatesGoogle Scholar
  74. 74.
    Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 48(3):937–943. doi:10.1016/j.fct.2010.01.003 CrossRefGoogle Scholar
  75. 75.
    Shimoda H, Seki E, Aitani M (2006) Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement Altern Med 6:9. doi:10.1186/1472-6882-6-9 CrossRefGoogle Scholar
  76. 76.
    Yamauchi R, Kobayashi M, Matsuda Y, Ojika M, Shigeoka S, Yamamoto Y, Tou Y, Inoue T, Katagiri T, Murai A, Horio F (2010) Coffee and caffeine ameliorate hyperglycemia, fatty liver, and inflammatory adipocytokine expression in spontaneously diabetic KK-Ay mice. J Agric Food Chem 58(9):5597–5603. doi:10.1021/jf904062c CrossRefGoogle Scholar
  77. 77.
    Kodiha M, Stochaj U (2011) Targeting AMPK for therapeutic intervention in type 2 diabetes. Medical complications of type 2 diabetes, vol 1. InTech Europe, CroatiaGoogle Scholar
  78. 78.
    Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond) 32(Suppl 4):S7–S12. doi:10.1038/ijo.2008.116 CrossRefGoogle Scholar
  79. 79.
    Kim AS, Miller EJ, Young LH (2009) AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf) 196(1):37–53. doi:10.1111/j.1748-1716.2009.01978.x CrossRefGoogle Scholar
  80. 80.
    Lopaschuk GD (2008) AMP-activated protein kinase control of energy metabolism in the ischemic heart. Int J Obes (Lond) 32(Suppl 4):S29–S35. doi:10.1038/ijo.2008.120 CrossRefGoogle Scholar
  81. 81.
    Ronnett GV, Ramamurthy S, Kleman AM, Landree LE, Aja S (2009) AMPK in the brain: its roles in energy balance and neuroprotection. J Neurochem 109(Suppl 1):17–23. doi:10.1111/j.1471-4159.2009.05916.x CrossRefGoogle Scholar
  82. 82.
    Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89(3):1025–1078. doi:10.1152/physrev.00011.2008 CrossRefGoogle Scholar
  83. 83.
    Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9(5):407–416. doi:10.1016/j.cmet.2009.03.012 CrossRefGoogle Scholar
  84. 84.
    Fogarty S (1804) Hardie DG (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 3:581–591. doi:10.1016/j.bbapap.2009.09.012 Google Scholar
  85. 85.
    Lage R, Dieguez C, Vidal-Puig A, Lopez M (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14(12):539–549. doi:10.1016/j.molmed.2008.09.007 CrossRefGoogle Scholar
  86. 86.
    Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100(3):328–341. doi:10.1161/01.RES.0000256090.42690.05 CrossRefGoogle Scholar
  87. 87.
    Viollet B, Lantier L, Devin-Leclerc J, Hebrard S, Amouyal C, Mounier R, Foretz M, Andreelli F (2009) Targeting the AMPK pathway for the treatment of type 2 diabetes. Front Biosci (Landmark Ed) 14:3380–3400CrossRefGoogle Scholar
  88. 88.
    Goto A, Chen BH, Song Y, Cauley J, Cummings SR, Farhat GN, Gunter M, Van Horn L, Howard BV, Jackson R, Lee J, Rexrode KM, Liu S (2014) Age, body mass, usage of exogenous estrogen, and lifestyle factors in relation to circulating sex hormone-binding globulin concentrations in postmenopausal women. Clin Chem 60(1):174–185. doi:10.1373/clinchem.2013.207217 CrossRefGoogle Scholar
  89. 89.
    McTiernan A, Wu L, Chen C, Chlebowski R, Mossavar-Rahmani Y, Modugno F, Perri MG, Stanczyk FZ, Van Horn L, Wang CY (2006) Relation of BMI and physical activity to sex hormones in postmenopausal women. Obesity (Silver Spring) 14(9):1662–1677. doi:10.1038/oby.2006.191 CrossRefGoogle Scholar
  90. 90.
    Anderson DC (1974) Sex-hormone-binding globulin. Clin Endocrinol 3(1):69–96CrossRefGoogle Scholar
  91. 91.
    Goto A, Song Y, Chen BH, Manson JE, Buring JE, Liu S (2011) Coffee and caffeine consumption in relation to sex hormone-binding globulin and risk of type 2 diabetes in postmenopausal women. Diabetes 60(1):269–275. doi:10.2337/db10-1193 CrossRefGoogle Scholar
  92. 92.
    Slow S, Miller WE, McGregor DO, Lee MB, Lever M, George PM, Chambers ST (2004) Trigonelline is not responsible for the acute increase in plasma homocysteine following ingestion of instant coffee. Eur J Clin Nutr 58(9):1253–1256. doi:10.1038/sj.ejcn.1601957 CrossRefGoogle Scholar
  93. 93.
    Wu X, Skog K, Jagerstad M (1997) Trigonelline, a naturally occurring constituent of green coffee beans behind the mutagenic activity of roasted coffee? Mutat Res 391(3):171–177CrossRefGoogle Scholar
  94. 94.
    Ludwig IA, Clifford MN, Lean ME, Ashihara H, Crozier A (2014) Coffee: biochemistry and potential impact on health. Food Funct 5(8):1695–1717. doi:10.1039/c4fo00042k CrossRefGoogle Scholar
  95. 95.
    Natella F, Scaccini C (2012) Role of coffee in modulation of diabetes risk. Nutr Rev 70(4):207–217. doi:10.1111/j.1753-4887.2012.00470.x CrossRefGoogle Scholar
  96. 96.
    van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32(6):1023–1025. doi:10.2337/dc09-0207 CrossRefGoogle Scholar
  97. 97.
    Yoshinari O, Igarashi K (2010) Anti-diabetic effect of trigonelline and nicotinic acid, on KK-A(y) mice. Curr Med Chem 17(20):2196–2202CrossRefGoogle Scholar
  98. 98.
    Mishkinsky J, Joseph B, Sulman FG (1967) Hypoglycaemic effect of trigonelline. Lancet 2(7529):1311–1312CrossRefGoogle Scholar
  99. 99.
    Nuhu AA (2014) Bioactive micronutrients in coffee: recent analytical approaches for characterization and quantification. ISRN Nutr 2014:384230. doi:10.1155/2014/384230 CrossRefGoogle Scholar
  100. 100.
    Yoshinari O, Sato H, Igarashi K (2009) Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Biosci Biotechnol Biochem 73(5):1033–1041. doi:10.1271/bbb.80805 CrossRefGoogle Scholar
  101. 101.
    de Valk HW (1999) Magnesium in diabetes mellitus. The Netherlands J Med 54(4):139–146CrossRefGoogle Scholar
  102. 102.
    Belin RJ, He K (2007) Magnesium physiology and pathogenic mechanisms that contribute to the development of the metabolic syndrome. Magnes Res 20(2):107–129Google Scholar
  103. 103.
    Barbagallo M, Dominguez LJ, Galioto A, Ferlisi A, Cani C, Malfa L, Pineo A, Busardo A, Paolisso G (2003) Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Asp Med 24(1–3):39–52CrossRefGoogle Scholar
  104. 104.
    Paolisso G, Scheen A, D’Onofrio F, Lefebvre P (1990) Magnesium and glucose homeostasis. Diabetologia 33(9):511–514CrossRefGoogle Scholar
  105. 105.
    Clifford MN (1999) Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J Sci Food Agric 79:362–372CrossRefGoogle Scholar
  106. 106.
    Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24(5):816–823. doi:10.1161/01.ATV.0000122852.22604.78 CrossRefGoogle Scholar
  107. 107.
    Lenzen S (2008) Oxidative stress: the vulnerable beta-cell. Biochem Soc Trans 36(Pt 3):343–347. doi:10.1042/BST0360343 CrossRefGoogle Scholar
  108. 108.
    Robinson K, Prins J, Venkatesh B (2011) Clinical review: adiponectin biology and its role in inflammation and critical illness. Crit Care 15(2):221. doi:10.1186/cc10021 CrossRefGoogle Scholar
  109. 109.
    Fisman EZ, Tenenbaum A (2014) Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol 13:103. doi:10.1186/1475-2840-13-103 CrossRefGoogle Scholar
  110. 110.
    Yamauchi T, Iwabu M, Okada-Iwabu M, Kadowaki T (2014) Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab 28(1):15–23. doi:10.1016/j.beem.2013.09.003 CrossRefGoogle Scholar
  111. 111.
    Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Investig 116(7):1784–1792. doi:10.1172/JCI29126 CrossRefGoogle Scholar
  112. 112.
    van Dam RM, Feskens EJ (2002) Coffee consumption and risk of type 2 diabetes mellitus. Lancet 360(9344):1477–1478. doi:10.1016/S0140-6736(02)11436-X CrossRefGoogle Scholar
  113. 113.
    van Dam RM, Hu FB (2005) Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 294(1):97–104CrossRefGoogle Scholar
  114. 114.
    Hiltunen LA (2006) Are there associations between coffee consumption and glucose tolerance in elderly subjects? Eur J Clin Nutr 60(10):1222–1225. doi:10.1038/sj.ejcn.1602441 CrossRefGoogle Scholar
  115. 115.
    Paynter NP, Yeh HC, Voutilainen S, Schmidt MI, Heiss G, Folsom AR, Brancati FL, Kao WH (2006) Coffee and sweetened beverage consumption and the risk of type 2 diabetes mellitus: the atherosclerosis risk in communities study. Am J Epidemiol 164(11):1075–1084. doi:10.1093/aje/kwj323 CrossRefGoogle Scholar
  116. 116.
    van Dam RM (2006) Coffee consumption and the decreased risk of diabetes mellitus type 2. Ned Tijdschr Geneeskd 150(33):1821–1825Google Scholar
  117. 117.
    van Dam RM (2006) Green tea, coffee, and diabetes. Ann Intern Med 145(8):634 (author reply 634–635) Google Scholar
  118. 118.
    van Dam RM, Willett WC, Manson JE, Hu FB (2006) Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women. Diabetes Care 29(2):398–403CrossRefGoogle Scholar
  119. 119.
    Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, Perkovic V, Grobbee DE, Batty D, Woodward M (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 169(22):2053–2063. doi:10.1001/archinternmed.2009.439 CrossRefGoogle Scholar
  120. 120.
    Hamer M, Witte DR, Mosdol A, Marmot MG, Brunner EJ (2008) Prospective study of coffee and tea consumption in relation to risk of type 2 diabetes mellitus among men and women: the Whitehall II study. Br J Nutr 100(5):1046–1053. doi:10.1017/S0007114508944135 CrossRefGoogle Scholar
  121. 121.
    Greenberg JA, Boozer CN, Geliebter A (2006) Coffee, diabetes, and weight control. Am J Clin Nutr 84(4):682–693Google Scholar
  122. 122.
    Naismith DJ, Akinyanju PA, Szanto S, Yudkin J (1970) The effect, in volunteers, of coffee and decaffeinated coffee on blood glucose, insulin, plasma lipids and some factors involved in blood clotting. Nutr Metab 12(3):144–151CrossRefGoogle Scholar
  123. 123.
    Crozier TW, Stalmach A, Lean ME, Crozier A (2012) Espresso coffees, caffeine and chlorogenic acid intake: potential health implications. Food Funct 3(1):30–33. doi:10.1039/c1fo10240k CrossRefGoogle Scholar
  124. 124.
    Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C (2007) Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr 137(10):2196–2201Google Scholar
  125. 125.
    Stalmach A, Steiling H, Williamson G, Crozier A (2010) Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch Biochem Biophys 501(1):98–105. doi:10.1016/j.abb.2010.03.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesSouth University School of PharmacySavannahUSA
  2. 2.Instituto de Neurologia Deolindo CoutoUniversidade Federal do Rio de JaneiroBotafogoBrazil

Personalised recommendations