Skip to main content
Log in

Can the use of blood-based biomarkers in addition to anthropometric indices substantially improve the prediction of visceral fat volume as measured by magnetic resonance imaging?

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether blood-based biomarkers can improve the prediction of visceral fat volume as measured by magnetic resonance imaging (MRI) and thus be used as proxies of visceral adiposity in large-scale epidemiological studies.

Methods

Whole-body MRI was performed to determine overall and regional body compartments in 542 participants aged 48–80 years (52 % men) of the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition. Anthropometric measures were taken, and clinical chemistry profiles including 15 routine biomarkers were obtained. Furthermore, nine novel biomarkers of visceral fat were assayed in a discovery sample of 100 participants. Multivariable regression models were calculated to assess associations between anthropometric variables, biomarkers, and visceral fat volume.

Results

The proportion of variance in visceral fat volume explained by anthropometric measures was 65.2 % in women and 60.8 % in men. By using blood-based biomarkers in addition to anthropometric indices, the variance in visceral fat volume explained could be increased by 4.8 % in women and 4.0 % in men. After backward selection, HbA1c, triglycerides, and adiponectin remained in the final multivariable regression model in women, while in men hsCRP, leukocytes, AST (GOT), GGT, LDL, and adiponectin remained in the final model.

Conclusions

In the present study, blood-based biomarkers moderately improved the prediction of visceral fat volume. This finding suggests that the underestimation of true associations between visceral fat and disease outcomes in epidemiological studies remains critical, even when using comprehensive sets of anthropometric and biomarker variables as proxies of visceral adiposity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung RT (1997) Obesity as a disease. Br Med Bull 53(2):307–321

    Article  CAS  Google Scholar 

  2. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444(7121):875–880. doi:10.1038/nature05487

    Article  Google Scholar 

  3. Sowers JR (2003) Obesity as a cardiovascular risk factor. Am J Med 115(Suppl 8A):37S–41S

    Article  CAS  Google Scholar 

  4. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579–591. doi:10.1038/nrc1408

    Article  CAS  Google Scholar 

  5. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371(9612):569–578. doi:10.1016/S0140-6736(08)60269-X

    Article  Google Scholar 

  6. Tchernof A, Despres JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93(1):359–404. doi:10.1152/physrev.00033.2011

    Article  CAS  Google Scholar 

  7. Ross R, Janssen I (2005) Computed tomography and magnetic resonance imaging. In: Heymsfield SB, Lohman TG, Wang Z,Going SB (eds) Human Body Composition, 2nd edn. Human Kinetics, Champaign, pp 89–108

  8. Neamat-Allah J, Wald D, Husing A, Teucher B, Wendt A, Delorme S, Dinkel J, Vigl M, Bergmann MM, Feller S, Hierholzer J, Boeing H, Kaaks R (2014) Validation of anthropometric indices of adiposity against whole-body magnetic resonance imaging: a study within the German European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts. PLoS One 9(3):e91586. doi:10.1371/journal.pone.0091586

    Article  Google Scholar 

  9. Brambilla P, Bedogni G, Moreno LA, Goran MI, Gutin B, Fox KR, Peters DM, Barbeau P, De Simone M, Pietrobelli A (2006) Cross validation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int J Obes (Lond) 30(1):23–30. doi:10.1038/sj.ijo.0803163

    Article  CAS  Google Scholar 

  10. Thomas EL, Parkinson JR, Frost GS, Goldstone AP, Dore CJ, McCarthy JP, Collins AL, Fitzpatrick JA, Durighel G, Taylor-Robinson SD, Bell JD (2012) The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring) 20(1):76–87. doi:10.1038/oby.2011.142

    Article  CAS  Google Scholar 

  11. Springer F, Ehehalt S, Sommer J, Ballweg V, Machann J, Binder G, Claussen CD, Schick F, Group DI-S (2012) Predicting volumes of metabolically important whole-body adipose tissue compartments in overweight and obese adolescents by different MRI approaches and anthropometry. Eur J Radiol 81(7):1488–1494. doi:10.1016/j.ejrad.2011.04.006

    Article  Google Scholar 

  12. Bonora E, Micciolo R, Ghiatas AA, Lancaster JL, Alyassin A, Muggeo M, DeFronzo RA (1995) Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements? Metabolism 44(12):1617–1625

    Article  CAS  Google Scholar 

  13. Ludescher B, Machann J, Eschweiler GW, Vanhofen S, Maenz C, Thamer C, Claussen CD, Schick F (2009) Correlation of fat distribution in whole body MRI with generally used anthropometric data. Invest Radiol 44(11):712–719. doi:10.1097/RLI.0b013e3181afbb1e

    Article  Google Scholar 

  14. Ross R, Leger L, Morris D, de Guise J, Guardo R (1992) Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol 72(2):787–795

    CAS  Google Scholar 

  15. Poll L, Wittsack HJ, Willers R, Modder U, Heinemann L, Kapitza C, Rave K (2004) Correlation between anthropometric parameters and abdominal fat volumes assessed by a magnetic resonance imaging method in patients with diabetes. Diabetes Technol Ther 6(6):844–849. doi:10.1089/dia.2004.6.844

    Article  Google Scholar 

  16. Pischon T (2009) Use of obesity biomarkers in cardiovascular epidemiology. Dis Markers 26(5–6):247–263. doi:10.3233/DMA-2009-0634

    Article  CAS  Google Scholar 

  17. Gavrila A, Chan JL, Yiannakouris N, Kontogianni M, Miller LC, Orlova C, Mantzoros CS (2003) Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies. J Clin Endocrinol Metab 88(10):4823–4831. doi:10.1210/jc.2003-030214

    Article  CAS  Google Scholar 

  18. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, Retzlaff BM, Knopp RH, Brunzell JD, Kahn SE (2003) Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46(4):459–469. doi:10.1007/s00125-003-1074-z

    CAS  Google Scholar 

  19. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316(2):129–139. doi:10.1016/j.mce.2009.08.018

    Article  CAS  Google Scholar 

  20. Canale MP, Manca di Villahermosa S, Martino G, Rovella V, Noce A, De Lorenzo A, Di Daniele N (2013) Obesity-related metabolic syndrome: mechanisms of sympathetic overactivity. Int J Endocrinol 2013:865965. doi:10.1155/2013/865965

    Article  Google Scholar 

  21. Lafarge JC, Naour N, Clement K, Guerre-Millo M (2010) Cathepsins and cystatin C in atherosclerosis and obesity. Biochimie 92(11):1580–1586. doi:10.1016/j.biochi.2010.04.011

    Article  CAS  Google Scholar 

  22. Naour N, Fellahi S, Renucci JF, Poitou C, Rouault C, Basdevant A, Dutour A, Alessi MC, Bastard JP, Clement K, Guerre-Millo M (2009) Potential contribution of adipose tissue to elevated serum cystatin C in human obesity. Obesity (Silver Spring) 17(12):2121–2126. doi:10.1038/oby.2009.96

    Article  CAS  Google Scholar 

  23. Chew-Harris JS, Florkowski CM, George PM, Elmslie JL, Endre ZH (2013) The relative effects of fat versus muscle mass on cystatin C and estimates of renal function in healthy young men. Ann Clin Biochem 50(Pt 1):39–46. doi:10.1258/acb.2012.011241

    Article  CAS  Google Scholar 

  24. Kloting N, Graham TE, Berndt J, Kralisch S, Kovacs P, Wason CJ, Fasshauer M, Schon MR, Stumvoll M, Bluher M, Kahn BB (2007) Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab 6(1):79–87. doi:10.1016/j.cmet.2007.06.002

    Article  Google Scholar 

  25. Lee JW, Im JA, Lee HR, Shim JY, Youn BS, Lee DC (2007) Visceral adiposity is associated with serum retinol binding protein-4 levels in healthy women. Obesity (Silver Spring) 15(9):2225–2232. doi:10.1038/oby.2007.264

    Article  CAS  Google Scholar 

  26. Engeli S, Utz W, Haufe S, Lamounier-Zepter V, Pofahl M, Traber J, Janke J, Luft FC, Boschmann M, Schulz-Menger J, Jordan J (2013) Fatty acid binding protein 4 predicts left ventricular mass and longitudinal function in overweight and obese women. Heart 99(13):944–948. doi:10.1136/heartjnl-2013-303735

    Article  CAS  Google Scholar 

  27. Gonzalez-Quintela A, Alonso M, Campos J, Vizcaino L, Loidi L, Gude F (2013) Determinants of serum concentrations of lipopolysaccharide-binding protein (LBP) in the adult population: the role of obesity. PLoS One 8(1):e54600. doi:10.1371/journal.pone.0054600

    Article  CAS  Google Scholar 

  28. Moreno-Navarrete JM, Escote X, Ortega F, Serino M, Campbell M, Michalski MC, Laville M, Xifra G, Luche E, Domingo P, Sabater M, Pardo G, Waget A, Salvador J, Giralt M, Rodriguez-Hermosa JI, Camps M, Kolditz CI, Viguerie N, Galitzky J, Decaunes P, Ricart W, Fruhbeck G, Villarroya F, Mingrone G, Langin D, Zorzano A, Vidal H, Vendrell J, Burcelin R, Vidal-Puig A, Fernandez-Real JM (2013) A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia 56(11):2524–2537. doi:10.1007/s00125-013-3015-9

    Article  CAS  Google Scholar 

  29. Ortega L, Riestra P, Navarro P, Gavela-Perez T, Soriano-Guillen L, Garces C (2013) Resistin levels are related to fat mass, but not to body mass index in children. Peptides 49:49–52. doi:10.1016/j.peptides.2013.08.019

    Article  CAS  Google Scholar 

  30. Amato MC, Pizzolanti G, Torregrossa V, Misiano G, Milano S, Giordano C (2014) Visceral adiposity index (VAI) is predictive of an altered adipokine profile in patients with type 2 diabetes. PLoS One 9(3):e91969. doi:10.1371/journal.pone.0091969

    Article  Google Scholar 

  31. Miyazaki Y, DeFronzo RA (2009) Visceral fat dominant distribution in male type 2 diabetic patients is closely related to hepatic insulin resistance, irrespective of body type. Cardiovasc Diabetol 8:44. doi:10.1186/1475-2840-8-44

    Article  Google Scholar 

  32. Shiina Y, Homma Y (2013) Relationships between the visceral fat area on CT and coronary risk factor markers. Intern Med 52(16):1775–1780

    Article  Google Scholar 

  33. Verrijken A, Francque S, Mertens I, Talloen M, Peiffer F, Van Gaal L (2010) Visceral adipose tissue and inflammation correlate with elevated liver tests in a cohort of overweight and obese patients. Int J Obes (Lond) 34(5):899–907. doi:10.1038/ijo.2010.4

    Article  CAS  Google Scholar 

  34. Carvalheira JB, Qiu Y, Chawla A (2013) Blood spotlight on leukocytes and obesity. Blood 122(19):3263–3267. doi:10.1182/blood-2013-04-459446

    Article  CAS  Google Scholar 

  35. Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, Charrondiere UR, Hemon B, Casagrande C, Vignat J, Overvad K, Tjonneland A, Clavel-Chapelon F, Thiebaut A, Wahrendorf J, Boeing H, Trichopoulos D, Trichopoulou A, Vineis P, Palli D, Bueno-De-Mesquita HB, Peeters PH, Lund E, Engeset D, Gonzalez CA, Barricarte A, Berglund G, Hallmans G, Day NE, Key TJ, Kaaks R, Saracci R (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5(6B):1113–1124. doi:10.1079/PHN2002394

    Article  CAS  Google Scholar 

  36. Boeing H, Wahrendorf J, Becker N (1999) EPIC-Germany: a source for studies into diet and risk of chronic diseases. European investigation into cancer and nutrition. Ann Nutr Metab 43(4):195–204. doi:10.1159/000012786

    Article  CAS  Google Scholar 

  37. Wald D, Teucher B, Dinkel J, Kaaks R, Delorme S, Boeing H, Seidensaal K, Meinzer HP, Heimann T (2012) Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies. J Magn Reson Imaging. doi:10.1002/jmri.23775

    Google Scholar 

  38. Wald D, Teucher B, Dinkel J, Kaaks R, Delorme S, Boeing H, Seidensaal K, Meinzer HP, Heimann T (2012) Automated quantification of adipose and skeletal muscle tissue in whole-body MRI data for epidemiological studies. Medical Imaging 2012: Computer-Aided Diagnosis. In: van Ginneken B, Novak CL (eds) Proceedings of the SPIE, Vol 8315, Article ID 831519, p 7

  39. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65(4 Suppl):1220S–1228S; discussion 1229S-1231S

    CAS  Google Scholar 

  40. Harrell FE (2001) Resampling, Validating, describing, and simplifying the model. In: Regression modeling strategies. Springer, New York, p 87–103

  41. Frederiksen L, Nielsen TL, Wraae K, Hagen C, Frystyk J, Flyvbjerg A, Brixen K, Andersen M (2009) Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men. J Clin Endocrinol Metab 94(10):4010–4015. doi:10.1210/jc.2009-0980

    Article  CAS  Google Scholar 

  42. Kishida K, Kim KK, Funahashi T, Matsuzawa Y, Kang HC, Shimomura I (2011) Relationships between circulating adiponectin levels and fat distribution in obese subjects. J Atheroscler Thromb 18(7):592–595

    Article  CAS  Google Scholar 

  43. Athyros VG, Tziomalos K, Karagiannis A, Anagnostis P, Mikhailidis DP (2010) Should adipokines be considered in the choice of the treatment of obesity-related health problems? Curr Drug Targets 11(1):122–135

    Article  CAS  Google Scholar 

  44. Gelsinger C, Tschoner A, Kaser S, Ebenbichler CF (2010) Adipokine update: new molecules, new functions. Wien Med Wochenschr 160(15–16):377–390. doi:10.1007/s10354-010-0781-6

    Article  Google Scholar 

  45. El-Shafey EM, Shalan M (2014) Plasma adiponectin levels for prediction of cardiovascular risk among hemodialysis patients. Ther Apher Dial 18(2):185–192. doi:10.1111/1744-9987.12065

    Article  CAS  Google Scholar 

  46. Yaghootkar H, Lamina C, Scott RA, Dastani Z, Hivert MF, Warren LL, Stancakova A, Buxbaum SG, Lyytikainen LP, Henneman P, Wu Y, Cheung CY, Pankow JS, Jackson AU, Gustafsson S, Zhao JH, Ballantyne CM, Xie W, Bergman RN, Boehnke M, el Bouazzaoui F, Collins FS, Dunn SH, Dupuis J, Forouhi NG, Gillson C, Hattersley AT, Hong J, Kahonen M, Kuusisto J, Kedenko L, Kronenberg F, Doria A, Assimes TL, Ferrannini E, Hansen T, Hao K, Haring H, Knowles JW, Lindgren CM, Nolan JJ, Paananen J, Pedersen O, Quertermous T, Smith U, Consortium G, Consortium R, Lehtimaki T, Liu CT, Loos RJ, McCarthy MI, Morris AD, Vasan RS, Spector TD, Teslovich TM, Tuomilehto J, van Dijk KW, Viikari JS, Zhu N, Langenberg C, Ingelsson E, Semple RK, Sinaiko AR, Palmer CN, Walker M, Lam KS, Paulweber B, Mohlke KL, van Duijn C, Raitakari OT, Bidulescu A, Wareham NJ, Laakso M, Waterworth DM, Lawlor DA, Meigs JB, Richards JB,Frayling TM (2013) Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes. Diabetes 62 (10):3589–3598. doi:10.2337/db13-0128

  47. Lim U, Turner SD, Franke AA, Cooney RV, Wilkens LR, Ernst T, Albright CL, Novotny R, Chang L, Kolonel LN, Murphy SP, Le Marchand L (2012) Predicting total, abdominal, visceral and hepatic adiposity with circulating biomarkers in Caucasian and Japanese American women. PLoS One 7(8):e43502. doi:10.1371/journal.pone.0043502

    Article  CAS  Google Scholar 

  48. Wichmann HE, Kaaks R, Hoffmann W, Jockel KH, Greiser KH, Linseisen J (2012) The German national cohort. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55(6–7):781–787

    Article  Google Scholar 

  49. Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, O’Donnell CJ, Fox CS, Hoffmann U (2009) Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham heart study. Eur Heart J 30(7):850–856. doi:10.1093/eurheartj/ehn573

    Article  Google Scholar 

  50. Neeland IJ, Turer AT, Ayers CR, Powell-Wiley TM, Vega GL, Farzaneh-Far R, Grundy SM, Khera A, McGuire DK, de Lemos JA (2012) Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 308(11):1150–1159. doi:10.1001/2012.jama.11132

    Article  CAS  Google Scholar 

  51. Nicklas BJ, Penninx BW, Cesari M, Kritchevsky SB, Newman AB, Kanaya AM, Pahor M, Jingzhong D, Harris TB, Health Aging Body Composition Study (2004) Association of visceral adipose tissue with incident myocardial infarction in older men and women: the health, aging and body composition study. Am J Epidemiol 160(8):741–749. doi:10.1093/aje/kwh281

    Article  Google Scholar 

  52. Rickles AS, Iannuzzi JC, Mironov O, Deeb AP, Sharma A, Fleming FJ, Monson JR (2013) Visceral obesity and colorectal cancer: are we missing the boat with BMI? J Gastrointest Surg 17 (1):133-143; discussion p 143. doi:10.1007/s11605-012-2045-9

Download references

Acknowledgments

The authors thank the participants of the EPIC-Heidelberg sub-study and the staff of the study center for their work during the sub-study. The present work was funded by the German Federal Ministry of Education and Research (Grant No. 01ER0809).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The EPIC-Heidelberg study and the sub-study were both approved by the local ethics committee of the Medical Faculty in Heidelberg, and each participant gave written informed consent for the use of biological materials and questionnaire data for research purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmine Neamat-Allah.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neamat-Allah, J., Johnson, T., Nabers, D. et al. Can the use of blood-based biomarkers in addition to anthropometric indices substantially improve the prediction of visceral fat volume as measured by magnetic resonance imaging?. Eur J Nutr 54, 701–708 (2015). https://doi.org/10.1007/s00394-014-0748-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0748-2

Keywords

Navigation